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Abstract—Recent developments in [1] and [2] introduced a
novel regularization method for compressive imaging in the con-
text of compressed sensing with coherent redundant dictionaries.
The approach relies on the observation that natural images
exhibit strong average sparsity over multiple coherent frames.
The associated reconstruction algorithm, based on an analysis
prior and a reweighted `1 scheme, is dubbed Sparsity Averaging
Reweighted Analysis (SARA). We review these advances and
extend associated simulations establishing the superiority of
SARA to regularization methods based on sparsity in a single
frame, for a generic spread spectrum acquisition and for a
Fourier acquisition of particular interest in radio astronomy.

I. INTRODUCTION

Consider a complex-valued signal x ∈ CN , assumed to
be sparse in some orthonormal basis Ψ ∈ CN×N , and also
consider the measurement model y = Φx+n, where y ∈ CM
denotes the measurement vector, Φ ∈ CM×N with M < N
is the sensing matrix and n ∈ CM represents the observation
noise. The most common approach in compressed sensing
(CS) is to recover x from y solving the following convex
problem [3]:

min
ᾱ∈CN

‖ᾱ‖1 subject to ‖y − ΦΨᾱ‖2 ≤ ε, (1)

where ε is an upper bound on the `2 norm of the noise and ‖·‖1
denotes the `1 norm of a complex-valued vector. The signal
is recovered as x̂ = Ψα̂, where α̂ denotes the solution to (1).
Such problems that solve for the representation of the signal in
a sparsity basis are known as synthesis-based problems. The
standard CS theory provides results for the recovery of x from
y if Φ obeys a Restricted Isometry Property (RIP) and Ψ is
orthonormal [3]. However, signals often exhibit better sparsity
in an overcomplete dictionary [4]–[6].

Recent works have begun to address the case of CS with
redundant dictionaries. In this setting the signal x is expressed
in terms of a dictionary Ψ ∈ CN×D, N < D, as x = Ψα,
α ∈ CD. Rauhut et al. [7] find conditions on the dictionary Ψ
such that the compound matrix ΦΨ obeys the RIP to accurately
recover α by solving a synthesis-based problem. Candès et
al. [8] provide a theoretical analysis of the `1 analysis-based
problem. As opposed to synthesis-based problems, analysis-
based problems recover the signal itself solving:

min
x̄∈CN

‖Ψ†x̄‖1 subject to ‖y − Φx̄‖2 ≤ ε, (2)

where Ψ† denotes the adjoint operator of Ψ. The aforemen-
tioned work [8] extends the standard CS theory to coherent and

redundant dictionaries, providing theoretical stability guaran-
tees based on a general condition of the sensing matrix Φ,
coined the Dictionary Restricted Isometry Property (D-RIP).

In [1] and [2], we proposed a novel sparsity analysis prior
for compressive imaging in the context of CS with coherent
and redundant dictionaries, relying on the observation that
natural images are simultaneously sparse in various frames,
in particular wavelet frames, or in their gradient. Promoting
average sparsity over multiple frames, as opposed to single
frame sparsity, is an extremely powerful prior. The asso-
ciated reconstruction algorithm, based on an analysis prior
and a reweighted `1 scheme, is dubbed Sparsity Averaging
Reweighted Analysis (SARA)1.

In this work, we review and further discuss these recent
advances. The superiority of SARA to regularization methods
based on sparsity in a single frame, as established through
simulations for a generic spread spectrum acquisition, is de-
scribed with an additional extensive visual support. Moreover,
we bring a novel illustration for a realistic continuous Fourier
sampling strategy of particular interest for radio interferometry
in astronomy. We finally discuss possible avenues to establish
explicit theoretical stability results for the algorithm.

II. SPARSITY AVERAGING REWEIGHTED ANALYSIS

Natural images are often complicated and encompass sev-
eral types of structures admitting sparse representations in
different frames. For example, piecewise smooth structures
exhibit gradient sparsity, while extended structures are better
encapsulated in wavelet frames. Observing that natural images
actually exhibit sparsity in multiple frames, we hypothesise
in [1] and [2] that average sparsity over multiple coherent
frames represents a strong prior. We thus proposed the use of
a dictionary composed of a concatenation of q frames, i.e.

Ψ =
1
√
q

[Ψ1,Ψ2, . . . ,Ψq], (3)

with Ψ ∈ CN×D, N < D, and an analysis `0 prior,

‖Ψ†x̄‖0 ∼
1

q

q∑
i=1

‖Ψ†i x̄‖0, (4)

to promote this average sparsity. Note that in this setting
each frame contains all the signal information as opposed to

1In [9], similar ideas were applied to the reverberant audio source separation
problem exploiting sparsity in a redundant short time Fourier transform.
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component separation approaches such as [4] and [5]. Also
note on a theoretical level that a single signal cannot be
arbitrarily sparse simultaneously in a set of incoherent frames.
For example, a signal extremely sparse in the Dirac basis
is completely spread in the Fourier basis. As discussed in
[2], each frame, Ψi, should be highly coherent with the other
frames in order for the signal to have a sparse representation
in Ψ. Concatenation of the first eight orthonormal Daubechies
wavelet bases (Db1-Db8) is an example of interest. The first
Daubechies wavelet basis, Db1, is the Haar wavelet basis.
It can be used as an alternative to gradient sparsity, usually
imposed by a total variation (TV) prior, to promote piecewise
smooth signals. The Db2-Db8 bases provide smoother de-
compositions. Coherence between the bases is ensured by the
compact support of the Daubechies wavelets.

A reweighted `1 minimization scheme [10] promotes av-
erage sparsity through the prior (4). The algorithm replaces
the `0 norm by a weighted `1 norm and solves a sequence of
weighted `1 problems with weights essentially the inverse of
the values of the solution of the previous problem:

min
x̄∈CN

‖WΨ†x̄‖1 subject to ‖y − Φx̄‖2 ≤ ε, (5)

where W ∈ RD×D is a diagonal matrix with positive weights.
The solution to (5) is denoted as ∆(y,Φ,W, ε). We update the
weights at each iteration, i.e. after solving a complete weighted
`1 problem, by the function f(γ, a) ∝ (γ + |a|)−1, where a
denotes the coefficient value estimated at the previous iteration
and γ plays the role of a stabilization parameter, avoiding
undefined weights when the signal value is zero. Note that as
γ → 0 the solution of the weighted `1 problem approaches the
solution of the `0 problem. We use a homotopy strategy and
solve a sequence of weighted `1 problems with a decreasing
sequence {γ(t)}, with t denoting the iteration time variable.

The sparsity averaging reweighted analysis (SARA) algo-
rithm is defined in Algorithm 1, with Ψ defined as in (3).
A rate parameter β ∈ (0, 1) controls the decrease of the
sequence through γ(t) = βγ(t−1). However, the noise standard
deviation σα in the representation domain, rough estimate for
a baseline above which significant signal components could be
identified, serves as a lower bound: γ(t) ≥ σα =

√
M/Dσn,

with σn the noise standard deviation in measurement space.
As a starting point we set x̂(0) as the solution of the `1 problem
and γ(0) = σs

(
Ψ†x̂(0)

)
, where σs(·) takes the empirical

standard deviation of a signal. The re-weighting process
ideally stops when the relative variation between successive
solutions is smaller than some bound η ∈ (0, 1), or after the
maximum number of iterations allowed, Nmax, is reached. We
fix η = 10−3 and β = 10−1.

III. SIMULATIONS

In this section, the superiority of SARA to regularization
methods based on sparsity in a single frame, as established
through simulations in the context of a generic spread spec-
trum acquisition, is described with a new extensive visual
support. Moreover, we bring a novel illustration for a realistic

Algorithm 1 SARA algorithm
Input: y, Φ, ε, σα, β, η and Nmax.
Output: Reconstructed image x̂.

1: Initialize t = 1, W(0) = I and ρ = 1.
2: Compute
x̂(0) = ∆(y,Φ,W(0), ε), γ(0) = σs

(
Ψ†x̂(0)

)
.

3: while ρ > η and t < Nmax do
4: Update W

(t)
ij = f

(
γ(t−1), α̂

(t−1)
i

)
δij ,

for i, j = 1, . . . , D with α̂(t−1) = Ψ†x̂(t−1).
5: Compute a solution x̂(t) = ∆(y,Φ,W(t), ε).
6: Update γ(t) = max{βγ(t−1), σα}.
7: Update ρ = ‖x̂(t) − x̂(t−1)‖2/‖x̂(t−1)‖2.
8: t← t+ 1
9: end while
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Figure 1. Reconstruction quality results for Lena in the context of a spread
spectrum acquisition. Left: original image. Right: SNR results against the
undersampling ratio for an input SNR of 30 dB (average values over 100
simulations are shown with corresponding standard deviations).

continuous Fourier sampling strategy of particular interest for
radio interferometry.

For the first experiment we recover a 256× 256 version of
Lena from compressive measurements. The spread spectrum
technique described in [11] is used as measurement operator.
We compare SARA to analogous analysis algorithms, and their
reweighted versions, changing the sparsity dictionary Ψ in (2)
and (5) respectively. Three different dictionaries are consid-
ered: the Daubechies 8 wavelet basis, the redundant curvelet
frame [6] and the concatenation of the first eight Daubechies
bases described above for SARA. The associated algorithms
are respectively denoted BPDb8, Curvelet and BPSA for the
non reweighted case. The reweighted versions are respectively
denoted RW-BPDb8, RW-Curvelet and SARA. Additionally,
we also compare to the TV prior, where the TV minimization
problem is formulated as a constrained problem like (2), but
replacing the `1 norm by the image TV norm. The reweighted
version of TV is denoted as RW-TV. Since the image of
interest is positive, we impose the additional constraint that
x̄ ∈ RN+ for all problems. The reconstruction quality of SARA
is evaluated as a function of the undersampling ratio M/N ,
for M/N in the range [0.1, 0.9]. The input SNR is set to 30
dB. The SNR results comparing SARA against all the other
benchmark methods are shown in the right panel of Figure 1.
The results demonstrate that SARA outperforms state-of-the-
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Figure 2. Reconstruction example of Lena for spread spectrum acquisition, with M = 0.2N and input SNR set to 30 dB. First and third columns show the
reconstructed images and the second and fourth columns show the error images. First row: BPSA(24.4 dB) and SARA (27.9 dB). Second row: TV(26.3 dB)
and RW-TV (26.6 dB). Third row: BPDb8 (21.4 dB) and RW-BPDb8 (21.2 dB). Fourth row: Curvelet (18.7 dB) and RW-Curvelet (18.3 dB).

art methods for all undersampling ratios. RW-TV provides the
second best results. BPSA achieves better SNRs than BPDb8,
curvelet and their reweighted versions for all undersampling
ratios. It also achieves similar SNRs to TV in the range 0.4-
0.9. Figure 2 presents a visual assessment for M = 0.2N ,
showing both reconstructed and error images. SARA provides
an impressive reduction of visual artifacts relative to the other
methods in this high undersampling regime. In particular RW-
TV exhibits expected cartoon-like artifacts. Other methods
do not yield results of comparable quality, either in SNR or
visually, with associated reconstructions full of visual artifacts.

The second experiment illustrates the performance of SARA
in the context of radio interferometric imaging by recovering
a 256 × 256 version of the well known M31 galaxy from
simulated continuous Fourier samples associated with a real-

istic radio telescope sampling pattern (superposition of arcs
of ellipses). The number of measurements is M = 9413,
affected by 30 dB of input noise. The dictionary for SARA
is the concatenation of the first eight Daubechies bases and
the Dirac basis. The Dirac basis is added given the sparsity in
image space due to the large field of view. For comparison, we
use two different methods: BP, constrained `1-minimization in
the Dirac basis (used as benchmark in the field), and BPDb8,
constrained analysis-based `1-minimization in the Db8 basis.
Figure 3 shows the original test image, the sampling pattern
and the corresponding dirty image, i.e. the inverse Fourier
transform of the measurements, with non-measured points set
to zero. The reconstructed images for BP, BPDb8 and SARA
are also reported. Once more, SARA provides not only a
drastic SNR increase but also a significant reduction of visual
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Figure 3. Radio Astronomy example. From left to right. Top row:
original test image in log10 scale and Fourier sampling pattern. Middle
row: corresponding dirty image in linear scale and reconstruction results for
BP (3.9 dB) in log10 scale. Bottom row: reconstruction results for BPDb8
(10.3 dB) and SARA (14.1 dB) in log10 scale.

artifacts relative to the other methods.

IV. CONCLUSION AND DISCUSSION

In this paper we have reviewed recent advances in the
average sparsity model and the associated algorithm SARA.
Extended simulations demonstrating the superiority of SARA
for compressive imaging reconstruction were described. Novel
results on the application of SARA to a realistic radio inter-
ferometric imaging scenario were also described.

Future work will concentrate on finding a theoretical frame-
work for the average sparsity model. In [2] we have put
average sparsity in the context of theory developed in [8].
However, specialized results for the particular case of con-
catenation of frames (or orthogonal bases) are needed. The
co-sparsity analysis model [12] proposes a general framework
for general analysis operators. Similar properties to the D-
RIP coined Ω-RIP are introduced in [13] to analyze greedy
algorithms in the context of the co-sparsity analysis model.
It would be interesting to explore the connections between
average sparsity and the co-sparsity model to have an estimate
on the number of measurements needed for reconstruction
compared to single frame representations.

The proposed approach relies on the observation that natural
images exhibit strong average sparsity, i.e. the signals of inter-
est have so-called simultaneous structured models. Recently, it
was shown in [14] that combinations of convex relaxations of
the individual structured models do not yield better results than
an algorithm that exploits only one of the structured models,
while non-convex approaches that approximate the simultane-
ous model can exploit the multiple structured models. Those
results suggest that the re-weighting approach in SARA to
approximate the `0 norm is fundamental to exploit average
sparsity, as observed in the simulation results (see the gap
between SARA and BPSA in Fig. 1 and Fig. 2).
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