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Abstract—We study the existence of dual certificates in convex
minimization problems where a rank-1 matrix X0 is to be
recovered under semidefinite and linear constraints. We provide
an example where such a dual certificate does not exist. We
prove that dual certificates are guaranteed to exist if the linear
measurement matrices can not be recombined to form something
positive and orthogonal to X0. If the measurements can be
recombined in this way, the problem is equivalent to one
with additional linear constraints. That augmented problem is
guaranteed to have a dual certificate at the minimizer, providing
the form of an optimality certificate for the original problem.

I. INTRODUCTION

We consider the problem of showing that X0 = x0x
∗
0 is a

minimizer to the semidefinite program

min f(X) subject to X � 0,A(X) = b. (1)

for x0 ∈ Rn, X ∈ Sn is a symmetric real n × n matrix, f
is convex and continuous everywhere, and A is linear, and
A(X0) = b ∈ Rn. Let 〈X,Y 〉 = tr(Y ∗X) be the Hilbert-
Schmidt inner product. Matrix orthogonality is understood to
be with respect to this inner product. The linear measurements
A(X) = b can be written as

A(X)i = 〈X,Ai〉 = bi for i = 1, . . . ,m

for certain symmetric matrices Ai. Note that the adjoint of A
is given by A∗λ =

∑
i λiAi.

One problem of this form is phase retrieval via PhaseLift,
where f(X) = tr(X) and Ai = ziz

∗
i for vectors zi [3].

Another example is the corresponding sparse recovery problem
with f(X) = ‖X‖1+c tr(X), where the first term is the entry-
wise `1 norm of X [6].

In these matrix recovery problems, a recovery result that X0

is a minimizer is often proved by constructing a dual certificate
(or approximation thereof) at X0. Similar to [5] and [2], we
call Y ∈ Sn a dual certificate at X0 if

Y = A∗λ+Q ∈ −∂f(X0)

Q � 0

Q ⊥ X0.

(2)

If a dual certificate exists at X0 then X0 is a minimizer of (1).
Further, it is straightforward to prove that existence of a dual
certificate at X0 is equivalent to (1) satisfying strong duality
with dual attainment by (λ,Q).

In the development of convex programs for matrix recov-
ery, it is desirable to know if strong duality holds. Without
guarantees of existence, attempting to analytically construct
dual certificates in particular problems may be futile. Under
strong duality, negative results guaranteeing that X0 is not
a minimizer could be proven by showing no dual certificate
exists, as done in [6].

The perspective of this note is to ease proofs of new
semidefinite relaxations, rather than easing their computation.
In particular, we are concerned with conditions on Ai under
which problem (1) has a dual certificate at the minimizer X0

or can be augmented into an equivalent problem that does.

A. Counterexample

Though sufficient, existence of a dual certificate (2) is not
necessary for X0 to minimize (1). Consider the following
problem:

min
1

2
‖X‖2 subject to X � 0,

〈
X,

(
0 0
0 1

)〉
= 0, (3)〈

X,

(
1 1
1 1

)〉
= 1,

where ‖ · ‖ is the Frobenius norm. To analyze this problem,
we recall the fact that

X � 0 and 〈X, qq∗〉 = 0 for q ∈ Rn ⇒ Xq = 0

⇒ 〈X, y ⊗ q〉 = 0 for any y, (4)

where y ⊗ q = yq∗ + qy∗ is the symmetric tensor product.
Using (4), we can see that any feasible X satisfies〈

X,

(
0 1
1 0

)〉
= 0. (5)

Hence, the minimizer and only feasible point of (3) is

X0 =

(
1 0
0 0

)
.

In this example, the subdifferential of f(X) = 1
2‖X‖

2

contains only the single element ∂f(X0) = {X0}. Again
using (4), we note that the dual certificate conditions (2) can
not be satisfied because there is no (Q,λ) such that

−
(

1 0
0 0

)
= λ1

(
0 0
0 1

)
+ λ2

(
1 1
1 1

)
+Q.
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for Q � 0, Q ⊥ X0. If we were to supplement (3) with the
constraint (5), the conditions (2) could be satisfied for some
(Q,λ).

B. Constraint Qualifications

It is well known that semidefinite programs of form (1)
can have a nonzero duality gap or can have a Lagrangian
dual problem for which the dual optimum is not attained [10],
[12]. A constraint qualification (CQ) is a condition such that
strong duality and dual attainment is ensured. For example,
the presence of a strictly feasible X � 0 such that A(X) = b,
is a constraint qualification and is known as Slater’s condition
[1].

Slater’s condition can be insufficient for low-rank matrix
recovery problems. As in the counterexample, if a linear
combination of the Ai are nonnegative and orthogonal to X0,
then there is no strictly feasible point. Additional constraint
qualifications can be found in [11], [12].

The work in this paper will be based of the following
constraint qualification. The Rockafellar-Pshenichnyi condi-
tion [4], [7], [12], [13] in the present context is that X0

minimizes (1) if and only if there exists a Y ∈ (−∂f(X0))∩
∂IX�0,A(X)=b(X0), where IX�0,A(X)=b is the indicator func-
tion of the feasible set. Let the cone of candidate dual
certificates be

S :=

{∑
i

λiAi +Q | Q � 0, Q ⊥ X0

}
, (6)

= ∂IX�0(X0) + ∂IA(X)=b(X0). (7)

A constraint qualification is thus that

∂IX�0(X0) + ∂IA(X)=b(X0) = ∂IX�0,A(X)=b(X0). (8)

This constraint qualification is a weakest constraint qualifica-
tion because it is independent of f [12].

One way to interpret this CQ is in terms of extremal direc-
tions. We say that A is an extremal direction of X0 relative
to the feasible set if 〈A,X〉 ≤ 〈A,X0〉 for all feasible X.
Any element of S is an extremal direction of X0, but S
does not necessarily contain all directions in which X0 is
extreme. The set of all such directions is the subdifferential
∂IX�0,A(X)=b(X0). The CQ (8) is that S contains all direc-
tions in which X0 is extreme. Note that ∂IX�0,A(X)=b(X0)
is the negative polar cone of the tangent cone of the feasible
set at X0.

C. Sufficient condition for dual certificate existence

Avoiding the pathology of the counterexample, we present
a condition for which dual certificates are guaranteed to exist.

Theorem 1. Let X0 minimize (1). If @A ∈ span{Ai} such
that A � 0 and A ⊥ X0, then strong duality holds and a dual
certificate exists at X0.

That is, the pathology of the counterexample arrives because
there is a linear combination of Ai that is positive semi-definite
and orthogonal to X0. If this case is excluded, a dual certificate
necessarily exists at the rank-one solution X0.

D. Weaker sufficient condition for dual certificate existence

If there is a positive semi-definite measurement matrix
A that is orthogonal to X0, then (4) provides additional
constraints on X that may or may not be implied by the linear
constraints A(X) = b alone. For any q ∈ Range(A), and for
any y, all feasible X satisfy 〈X, y ⊗ q〉 = 0. Hence y ⊗ q is
an extremal direction of X0, and must be in S in order for
strong duality to hold. We say that S is complete at X0 if the
following condition holds:

If A = A∗λ � 0, A ⊥ X0, then
y ⊗ q ∈ S for all y and for all q ∈ Range(A). (9)

Theorem 2. Let X0 minimize (1). If S satisfies the com-
pleteness condition (9) then strong duality holds and a dual
certificate exists at X0.

E. General certificate form

As the counterexample illustrates, the problem (1) may not
contain the linear equations 〈X, y⊗q〉 = 0 for the q described
in section I-D. In this case, the optimality certificate for (1) can
be expressed as a dual certificate for the problem augmented
with linear constraints implied by X � 0 and A(X) = b.
This augmented problem is equivalent to (1) and satisfies the
conditions of Theorem 2. Hence, its dual contains the form of
the optimality certificate for (1).

The following procedure outlines a process for augmenting
the measurement matrices {Ai} in such a way that there exists
a dual certificate of the form

∑
i λiAi+Q for Q � 0, Q ⊥ X0:

1) Consider all A � 0, A ∈ span{Ai}, 〈A,X0〉 = 0.
2) Write each A =

∑
k ckqkq

∗
k with ck > 0.

3) For each coordinate basis element ej , if ej ⊗ qk /∈
span{Ai}, append 〈X, ej ⊗ qk〉 = 0 to A(X) = b.

4) Repeat until A remains unchanged.
This process will produce a set S satisfying (9), and

it will terminate after finitely many repetitions because
rank(span{Ai}) increases each time. Each added measurement
is implied by the constraints of (1) and does not change the
underlying problem.

This process can be viewed as a regularization of the convex
problem (1). It differs from a minimal cone regularization
because the positive semidefinite cone constraint is kept [10],
[12]. Another regularization approach in the literature is the
extended Lagrange-Slater Dual (ELSD), which is an alterna-
tive to the Langrangian dual that guarantees strong duality
at the expensive of polynomially many additional variables
[9], [10]. The regularization procedure above is different from
ELSD because it get strong duality while keeping the standard
Lagrangian dual. The dual variables can hence be viewed as
Lagrange multipliers for direct or implied measurements of
the matrix X0. Unfortunately, the procedure above can not be
written down mechanically, whereas the ELSD can. Hence, it
is less useful for performing the semidefinite optimization than
it is as a theoretical process for ensuring that a dual certificate
exists.
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II. PROOFS

A. Notation

For a subspace V ⊂ Rn, let V ⊥ be the orthogonal
complement with respect to the ordinary inner product. Let
IV ⊥ be the matrix corresponding to orthogonal projection of
vectors onto V ⊥. Let PV ⊥X = IV ⊥XIV ⊥ be the projection
of symmetric matrices onto symmetric matrices with row and
column spans in V ⊥. Let Px⊥0 be the special case in the
instance where V = span{x0}. In the special case where x0

is the coordinate basis element e1, Px⊥0 X is the restriction of
X to the lower-right n − 1 × n − 1 block. Let the indicator
function for the set Ω be IΩ(X), which is zero on Ω and
infinity otherwise.

B. Proof of Theorems

Under the assumptions of Theorem 1, the set S trivially
satisfies the completeness condition (9). The theorem is thus a
special case of Theorem 2, and we will prove them together.
As per the constraint qualification (8), it suffices to prove
the following technical lemma. This main technical lemma
establishes additivity of subgradients of a class of indicator
functions. The primary direction uses a separating hyperplane
argument to build an item in the subgradient. That argument
requires S be closed, as proven in Lemma 2. It also hinges on
Lemma 4 which classifies when perturbations from X0 remain
positive semidefinite.

Lemma 1. Let X0 = x0x
∗
0 and A(X0) = b. S satisfies the

completeness condition (9) if and only if

∂IX�0,A(X)=b(X0) = ∂IX�0(X0) + ∂IA(X)=b(X0). (10)

Proof of Lemma 1: We omit the proof that ¬(9)⇒ ¬(10).
Now, we show (9) ⇒ (10). One inclusion in (10) is

automatic:

∂IX�0,A(X)=b(X0) = ∂(IX�0 + IA(X)=b)(X0) (11)
⊃ ∂IX�0(X0) + ∂IA(X)=b(X0). (12)

To prove the other inclusion, we let Y /∈ S = ∂IX�0(X0) +
∂IA(X)=b(X0). We will show that Y /∈ ∂IX�0,A(X)=b(X0)
by exhibiting a feasible X such that 〈Y,X −X0〉 > 0.

As we will prove in Lemma 2, (9) implies that S is closed.
By the separating hyperplane theorem, for any Z /∈ S, there
exists a ΛZ such that

A(ΛZ) = 0, (13)
〈ΛZ , Q〉 ≤ 0 for all Q � 0, Q ⊥ X0, (14)
〈ΛZ ,M〉 = 0 if ±M ∈ S, (15)
〈ΛZ , Z〉 > 0. (16)

We observe that (14) implies Px⊥0 ΛZ � 0.

Let B = {qq∗ | qq∗ ⊥ X0, qq
∗ /∈ S}. We will build a Λ̃

satisfying the following properties:

A(Λ̃) = 0, (17)

〈Λ̃, Q〉 ≤ 0 for all Q � 0, Q ⊥ X0, (18)

〈Λ̃,M〉 = 0 if ±M ∈ S, (19)

〈Λ̃, qq∗〉 > 0 for all qq∗ ∈ B. (20)

We build Λ̃ through the following process. Choose a q1q
∗
1 ∈ B

and find a corresponding Λq1q∗1 . Restrict B to a set B̃
containing only the elements that are orthogonal to Λq1q∗1 .
All elements in B \ B̃ have a positive inner product with
Λq1q∗1 . Choose q2q

∗
2 ∈ B̃ and find Λq2q∗2 . Further restrict B̃

to only the elements that are orthogonal to Λq2q∗2 . Now, all
elements in B \ B̃ have a positive inner product with Λq1q∗1 or
Λq2q∗2 . Repeat this process until B is empty. The process will
complete after a finite number of repetitions because the set
B̃ is restricted to a space of strictly decreasing dimension at
each step. Let Λ̃ =

∑
i Λqiq∗i . We observe (17)–(19) hold due

to (13)–(15). Every element of B has a positive inner product
with Λqiq∗i for some i. Hence, we have (20).

Let Λ = ΛY +εΛ̃, where ε is small enough that 〈Λ, Y 〉 > 0.
By Lemma 4, if (a) Px⊥0 Λ � 0 and (b) Λ ⊥ qq∗ and qq∗ ⊥
X0 ⇒ Λ ⊥ x0⊗q, then there exists δ > 0 such that X0+δΛ �
0. By (14) and (18), (a) holds. To show (b) holds, we consider
a qq∗ ⊥ Λ, qq∗ ⊥ X0. By (20) and the definition of Λ, qq∗

must be in S. By (9), ±x0 ⊗ q ∈ S. Hence, by (15) and (19),
Λ ⊥ x0 ⊗ q, and (b) holds.

As given by Lemma 4, let X = X0 + δΛ. Because X � 0
and A(Λ) = 0, X is feasible. Additionally, 〈Y,X −X0〉 > 0
because 〈Λ, Y 〉 > 0. Hence, Y /∈ ∂IX�0,A(X)=b(X0).

The hyperplane separation argument above requires that S
be closed. The following lemma reduces the closedness of
S ⊂ Sn to an n − 1 × n − 1 case without the orthogonality
constraint, which is proved in Lemma 3.

Lemma 2. If S = {
∑
i λiAi +Q | Q � 0, Q ⊥ X0} satisfies

the completeness condition (9) then S is closed.

Proof of Lemma 2: Without loss of generality let
X0 = e1e

∗
1. This can be seen by letting V be an orthogonal

matrix with x0/‖x0‖ in the first column, and by considering
the set V ∗SV . If necessary, linearly recombine the Ai such
that the first columns of A1, . . . , A` are independent and the
first columns of the remaining A`+1, . . . , Am are zero.

Consider a Cauchy sequence A(k) +Q(k) → X , where
A(k) =

∑m
i=1 λ

(k)
i Ai. We will establish that X ∈ S. Because

Q(k) � 0 and Q(k) ⊥ e1e
∗
1, it is zero in the first row and

column. Hence the first column of
∑`
i=1 λ

(k)
i Ai converges to

the first column of X . By independence, we obtain that λ(k)
i

converges to some λ(∞)
i for each 1 ≤ i ≤ `. As a result,

m∑
i=`+1

λ
(k)
i Ai +Q(k) → X,
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where X = X−
∑`
i=1 λ

(∞)
i Ai, and X is zero in the first row

and column.
The problem has now been reduced to one of size n−1×n−

1 without an orthogonality constraint, and Lemma 3 completes
the proof. Let Ãi be the lower-right n− 1×n− 1 sub matrix
of Ai. Let S̃ = {

∑m
i=`+1 λiÃi + Q̃ | Q̃ � 0} ∈ Sn−1. If

q̃q̃∗ ∈ S̃ then
(

0
q̃

)(
0
q̃

)∗
∈ S. By (9),

(
0
ỹ

)
⊗
(

0
q̃

)
∈ S ∀y ∈

Rn−1. By independence of the first columns of A1, . . . , A`,
ỹ⊗ q̃ ∈ S̃. The conditions of Lemma 3 are met. Hence, X =∑m
i=`+1 λ

(∞)
i Ai + Q(∞) with Q(∞) � 0, Q(∞) ⊥ e1e

∗
1. We

conclude X ∈ S and S is closed.

The closedness of S above relies on the closedness of a
lower dimensional S̃ without the orthogonality constraint.

Lemma 3. The set S̃ = {
∑
i λiAi +Q | Q � 0} ⊂ Sn is

closed if

qq∗ ∈ S̃ ⇒ y ⊗ q ∈ S̃ ∀y. (21)

Proof of Lemma 3: Consider a Cauchy sequence A(k) +

Q(k) → X , where A(k) =
∑
i λ

(k)
i Ai. Let V = span{q |

qq∗ ∈ S̃}. For each q ∈ V , (21) gives that y ⊗ q ∈ S̃ ∀y.
Because PV ⊥ is the projection of matrices onto matrices with
row and column spaces living in V ⊥,

±(X − PV ⊥X) ∈ S̃ for any X. (22)

The Cauchy sequence satisfies

PV ⊥A(k) + PV ⊥Q(k) → PV ⊥X. (23)

If ‖PV ⊥A(k)‖F → ∞, then ‖P
V⊥A

(k)‖F

‖P
V⊥Q

(k)‖F
→ 1 and〈

P
V⊥A

(k)

‖P
V⊥A

(k)‖F
,
P

V⊥Q
(k)

‖P
V⊥Q

(k)‖F

〉
→ −1 as k →∞. The sets {A ∈

PV ⊥span Ai} ∩ {‖A‖F = 1} and {Q � 0} ∩ {‖Q‖F = 1} are
compact. Hence 〈A,Q〉 achieves its minimum. That minimum
value must be −1, which implies that there exists a nonzero,
positive semidefinite matrix −Q ∈ PV ⊥span Ai. This is is
impossible by the construction of V . Suppose PV ⊥A∗λ � 0.
By (22), we see PV ⊥A∗λ ∈ S̃. Hence every rank-1 component
qq∗ of PV ⊥A∗λ � 0 belongs to S̃. We reach a contradiction
because q would belong to V and can not be in the column
space of PV ⊥A∗λ.

Hence, PV ⊥A(k) has a bounded subsequence. Thus, there
is a further subsequence that converges and PV ⊥X is of the
form PV ⊥(

∑
i λ

(∞)
i Ai + Q(∞)). By (22), we conclude X =∑m

i=1 λ
(∞)
i Ai +Q(∞) with Q(∞) � 0.

The following lemma establishes a necessary and sufficient
condition for when a symmetric perturbation from a positive
rank 1 matrix remains positive.

Lemma 4. Let X0 = x0x
∗
0 ∈ Rn×n. X0 + δΛ � 0 for some

δ > 0 if and only if (a) Px⊥0 Λ � 0 and (b) Λ ⊥ qq∗ and
q ⊥ x0 ⇒ Λ ⊥ x0 ⊗ q.

Proof: Without loss of generality, assume X0 = e1e
∗
1. In

this case Px⊥0 is the restriction to the lower-right n−1×n−1

block. Let Λx⊥0 ∈ Sn−1 be that lower-right block of Λ. Write
the block form

Λ =

(
Λ11 ρ∗

ρ Λx⊥0

)
.

First we prove X0 +δΛ � 0⇒ (a) and (b). We immediately
have (a) because X0 is zero on the lower-right subblock. Using
a Schur complement, if 1 + δΛ11 > 0, then

X0 + δΛ � 0⇔ Λx⊥0 −
δ

1 + δΛ11
ρρ∗ � 0. (24)

If necessary, δ can be reduced to enforce 1 + δΛ11 > 0. If (b)
does not hold, then there is ξ ∈ Rn−1 such that Λx⊥0 ⊥ ξξ∗

and ρ 6⊥ ξ. By testing against ξ, we see Λx⊥0 −
δ

1+δΛ11
ρρ∗ 6� 0

Second, we prove (a) and (b) ⇒ X0 + δΛ for some δ > 0.
Assume (a) and (b) hold. Using the property (24) about Schur
complements, it suffices to show

Λx⊥0 −
δ

1 + δΛ11
ρρ∗ � 0. (25)

Let V = span {q | Λx⊥0 ⊥ qq∗} ⊂ Sn−1. There is some ε
such that Λx⊥0 � εIV ⊥ . If not, there would be a sequence of
x(ε) ∈ V ⊥ such that ‖x(ε)‖ = 1 and 0 < x(ε)Λx⊥0 x

(ε)∗ <

ε. Such x(ε) would have a convergent subsequence to some
x(0) ∈ V ⊥ such that x(0)Λx⊥0 x

(0)∗ = 0, which is impossible.
We note that for any q ∈ V , (b) guarantees ρ ⊥ q.

Hence ρ ∈ V ⊥ and there is a sufficiently small δ such that
δ

1+δΛ11
ρρ∗ � εIV ⊥ . We conclude that (25) holds, and hence

∃δ > 0 such that X0 + δΛ � 0.
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