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Abstract—Sparse signal representations have emerged as pow-
erful tools in signal processing theory and applications, and serve
as the basis of the now-popular field of compressive sensing (CS).
However, several practical signal ensembles exhibit additional,
richer structure beyond mere sparsity. Our particular focus in
this paper is on signals and images where, owing to physical
constraints, the positions of the nonzero coefficients do not change
significantly as a function of spatial (or temporal) location.
Such signal and image classes are often encountered in seismic
exploration, astronomical sensing, and biological imaging. Our
contributions are threefold: (i) We propose a simple, deterministic
model based on the Earth Mover Distance that effectively captures
the structure of the sparse nonzeros of signals belonging to such
classes. (ii) We formulate an approach for approximating any
arbitrary signal by a signal belonging to our model. The key
idea in our approach is a min-cost max-flow graph optimization
problem that can be solved efficiently in polynomial time. (iii)
We develop a CS algorithm for efficiently reconstructing signals
belonging to our model, and numerically demonstrate its benefits
over state-of-the-art CS approaches.

I. INTRODUCTION

A signal (or image) is said to be k-sparse if only k of its

coefficients in a given basis expansion are nonzero; in other

words, the intrinsic information content in the signal is minis-

cule relative to its apparent size. This simple notion enables

a wide variety of conceptual and algorithmic techniques to

compress, reconstruct, denoise, and process practical high-

dimensional signals and images. Notably, sparsity serves as

the cornerstone of the field of compressive sensing (CS), an

interesting alternative to the classical Shannon/Nyquist theory

for signal sampling and reconstruction [1, 2]. A canonical

result in CS states that for a k-sparse signal of length n, merely

O(k log n/k) non-adaptive, linear measurements (samples)

suffice to ensure robust, efficient reconstruction. When k ≪ n,

this can lead to significant practical benefits.

In several practical applications, the nonzero coefficients of

signal ensembles exhibit additional, richer relationships that

cannot be captured by mere sparsity. Consider, for exam-

ple, a 2D “image” constructed by column-wise stacking of

seismic time traces (or shot records) measured by geophones

positioned on a uniform linear array. Assuming the presence

of only a few subsurface reflectors, the physics of wave

propagation dictates that such a 2D image would essentially

consist of a number of curved lines, possibly contaminated

with noise (see Figure 1). A convenient model for such an

image is to simply assume that each column is sparse; indeed,

such a sparsity assumption has been proven to be beneficial for

Fig. 1. Example of a seismic shot record (Sigsbee2A data set). The horizontal
axis corresponds with space (receiver) and the vertical axis with time. Note that
the large coefficients of neighboring columns are at similar locations.

efficient shot record sampling and reconstruction [3]. However,

while this assumption may suffice for some situations, such a

model cannot capture the the fact that the indices of the nonze-

ros change smoothly across adjacent columns. Such settings

are commonplace; for example, similar “line” singularities are

encountered in applications such as biological imaging and

radio-astronomy.

In this paper, we propose a deterministic model for sparse

signal ensembles where the locations of the nonzeros, or the

support, of a signal transforms continuously as a function

of spatial (or temporal) location. A key ingredient in our

model is the classical Earth Mover Distance (EMD) [4], and

we will call it the Constrained EMD model. Informally, our

proposed model assumes that: (i) each signal in our ensemble

is k-sparse, and (ii) the cumulative EMD between pairs of

adjacent signal supports is constrained to be no greater than

a nonnegative parameter B. The parameter B controls how

dramatically the support can vary across different signals; a

value of B = 0 indicates that the support remains invariant

across all signals in our ensemble, while a large value of B
admits potentially drastic changes across adjacent supports.

Next, given an arbitrary input signal (ensemble) x, we

develop an efficient algorithm to find a near-optimal ℓ2-

approximation of x in the Constrained EMD model. We

show that the support of the optimal approximation can be

discovered by solving a small number of min-cost max-flow [5]

problems over a specially defined graph. Each intermediate

problem can be solved using existing, highly efficient net-

work optimization methods, and therefore the overall signal

approximation can be obtained in polynomial time.

Additionally, we demonstrate the advantages of the Con-
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strained EMD model, and the associated approximation algo-

rithm, in the context of compressive sensing. Geometrically,

the model is equivalent to a particular union of subspaces

of the ambient signal space. Therefore, we can leverage the

framework of model-based compressive sensing [6] to build

a new CS reconstruction algorithm that is specially tailored

to signal ensembles well-described by the Constrained EMD

model. We illustrate the numerical benefits of the new algo-

rithm in comparison with existing state-of-the-art CS recovery

approaches.

The rest of this paper is organized as follows. Section II

provides a brief introduction to structured sparsity and com-

pressive sensing. Section III introduces the constrained EMD

model and describes our main algorithm. Section IV illustrates

the advantages of our method with example reconstructions

of images and quantitative results of algorithm performance.

Section V concludes with a discussion of further directions.

II. BACKGROUND

A. Preliminaries

A signal x ∈ R
n is said to be k-sparse in the ortho-

basis Ψ if at most k < n coefficients of the basis expansion

α = ΨTx are nonzero. In this paper, we assume that the basis

Ψ is the identity matrix, while noting that all our results are

conceptually valid for general Ψ. The support of x is defined

as the set of indices corresponding to nonzero entries of x; this

can be represented by a binary vector s(x) ∈ {0, 1}n with at

most k ones. Denote the set of all k-sparse signals by Σk.

Geometrically, this set is equivalent to the union of the
(
n
k

)

canonical k-dimensional subspaces of Rn.

B. Structured sparsity

Often, we possess some additional information about the

support of a sparse signal x. For example, suppose we are

interested in k-sparse signals with only a few permitted

configurations of s(x). This defines a union of subspaces

model A [7], comprising only mk canonical k-dimensional

subspaces of Rn, with mk <
(
n
k

)
. Let x|Ω represent the entries

of x corresponding to the set of indices Ω ⊆ {1, . . . , n}, and

let ΩC denote the complement of the set Ω. Then, define:

A =

mk⋃

m=1

Xm, Xm := {x : x|Ωm
∈ R

k, x|ΩC
m
= 0}, (1)

where each subspace Xm contains all signals x with

supp(x) ∈ Ωm. In light of this definition, we view any such

union of subspaces as a structured sparsity model. As in the

general k-sparse case, given a signal x, we seek a signal x∗

such that x∗ ∈ A, and ‖x − x∗‖2 is minimized. We define

a model-projection algorithm as a procedure M(x, k) which

returns the best k-term approximation of a given signal under

the model A, i.e., x∗ = M(x, k).

C. Compressive Sensing

Suppose instead of collecting all the coefficients of a vector

x ∈ R
n, we merely record m = O(k log n/k) inner products

(measurements) of x with m < n pre-selected vectors, i.e.,

we observe an m-dimensional y = Φx, where Φ ∈ R
m×n.

The central tenet of compressive sensing (CS) is that x can

be exactly recovered from y, even though Φ is rank-deficient

(and therefore has a nontrivial nullspace). Numerous algo-

rithms for signal recovery have been developed; particularly,

iterative support selection algorithms (such as CoSaMP [8]

and IHT [9]) have emerged that are both numerically stable

and computationally efficient. Also, an added advantage is that

such iterative algorithms can be easily tailored to any arbitrary

structured sparsity model; this forms the central premise of

model-based compressive sensing framework, initially pro-

posed in [6]. In Section III below, we describe this further.

D. Related Work

There has been prior research on reconstructing time se-

quences of spatially sparse signals (e.g., [10]). Such ap-

proaches assume that the support of the signal (or even the

signal itself) does not change much between two consecutive

time steps. However, the variation between two columns a
and b was defined according to the ℓ0 distance between

the supports ‖s(a) − s(b)‖0. In contrast, in this paper we

measure this difference according to the classical Earth Mover

Distance (EMD) (also variously known as the Mallows or the

Wasserstein distance) between the supports. As a result, our

model easily handles signals such as those in Figure 3, where

the supports of any two consecutive columns can potentially

be even disjoint, yet differ very little according to the EMD.

Another related work is that of [11], who proposed the

use of the EMD in a compressive sensing context in order

to measure the approximation error of the recovered signal.

In contrast, in this paper we are using the EMD to constrain

the support set of the signals.

III. THE CONSTRAINED EMD MODEL

Below, we interpret the signal x ∈ R
n as a matrix X ∈

R
h×w with n = hw. Furthermore, we denote the individual

columns of X with xi ∈ R
h for i ∈ [w].

A. Definitions

Definition 1: The EMD of two index sets A and B with

|A| = |B| is defined as:

EMD(A,B) = min
π:A→B

∑

a∈A

|a− π(a)|, (2)

where π ranges over all one-to-one mappings from A to B.

Definition 2: The support-EMD of two k-sparse vectors

a, b ∈ R
h is defined as:

sEMD(a, b) = EMD(supp(a), supp(b)). (3)

Definition 3: The Constrained EMD model is the set:

Ak,B = {X ∈ R
h×w : |supp(xi)| = k for i ∈ [w],

w−1∑

i=1

sEMD(xi, xi+1) ≤ B}.
(4)
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Fig. 2. A signal X with the corresponding flow network GX,k,λ. The
node costs are the squared amplitudes of the corresponding signal components
(negation omitted here). The capacities and edge costs are omitted for clarity.
All capacities in the flow network are 1. The edge costs are the vertical distances
between the start and end nodes.

The set Ak,B in (4) is a subset of the set of all k−sparse

signals Σk, and therefore the Constrained EMD model consti-

tutes a specific instance of a structured sparsity model (1). For

given dimensions of X , the Constrained EMD model has two

parameters: (i) k, the sparsity of each column xi and (ii) B,

the cumulative support-EMD of adjacent columns xi and xi+1.

Importantly, we note that we only constrain the EMD between

adjacent signal supports and not the actual signal coefficients.

B. Graph-Based Model-Projection

In order to use our Constrained EMD signal model within

a model-based compressive sensing framework, we need an

algorithm that approximates arbitrary signals with signals in

our model. Formally, we need a model-projection algorithm

M(x, k,B) that returns a x̂ ∈ Ak,B minimizing ‖x−x′‖2 for

all x′ ∈ Ak,B .

To achieve this, we use the following graph-based approach.

Observe that the support-EMD (3) of a pair of signals is the

minimal cost of a maximum bipartite matching of the two

support sets, where the edge costs are given by the absolute

difference between the indices. We extend this intuition to

ensembles of signals, via the notion of a flow network.

Definition 4: For a given signal X , sparsity k and parameter

λ, the flow network GX,k,λ consists of the following elements:

• The nodes comprise a source s, a sink t and a node vi,j
for i ∈ [h], j ∈ [w], i.e. one node per signal coefficient.

• G has an edge from every vi,j to every vk,j+1 for

i, k ∈ [h], j ∈ [w − 1]. Moreover, there is an edge from

s to every vi,1 and from every vi,w to t for i ∈ [h].
• The capacity of every edge and node is 1.

• The cost of a node vi,j is −x2
i,j . The cost of an edge

from vi,j to vk,j+1 is λ|i − k|. The cost of the source,

the sink and all edges incident to the source or sink is 0.

• The supply at the source, and the demand at the sink,

both equal k.

Figure 2 illustrates the construction of an example GX,k,λ.

Observe that for any GX,k,λ, a standard min-cost max-flow

optimization [5] through this network reveals a subset of

nodes S that corresponds to exactly k indices per column.

Moreover, this optimal flow minimizes the cost −‖X|S‖2 +
λ
∑w−1

i=1
EMD(si, si+1) over all choices of S. This cost in-

cludes both the fidelity of the signal projection as well as

the cumulative support-EMD across columns. The trade-off

between these two quantities is determined by the parameter

Algorithm 1 Model projection M(x, k,B)

λl ← 0, λh ← 1
do

λh ← 2λh

Run min-cost max-flow on GX,k,λh

while resulting support has total support-EMD > B.

do

λm ← (λh + λl)/2
Run min-cost max-flow on GX,k,λm

if resulting support has total support-EMD > B
λl ← λm

else

λh ← λm

while λh − λl > ǫλ
return x̂ corresponding to min-cost max flow on GX,k,λh

λ; for small values of λ, the resulting flow has a large support-

EMD and vice versa. Setting λ = 0 removes the EMD-

constraint while λ = +∞ is equivalent to selecting the

k rows with the largest amplitude sums. By systematically

varying the parameter λ, we can find a support S that belongs

to the Constrained EMD model Ak,B for a target B and

simultaneously maximizes the quality of the projection under

this constraint.

Algorithm 1 describes the entire model projection algorithm.

In order to solve the min-cost max-flow instances, it is possible

to exploit the special structure of the graph. Since all edges

and nodes have unit capacity, it is sufficient to find k cheap-

est augmenting paths in the flow network. Using Dijkstra’s

algorithm and assuming a square X , i.e. h = w =
√
n, each

min-cost max-flow can be found in O(kn3/2) time.

C. Compressive Sensing

The model projection method (Alg. 1) is useful in a number

of contexts. Here, we use Alg. 1 in order to develop a new

compressive sensing (CS) reconstruction algorithm specially

tailored to signals and images with line singularities. Since

the constrained EMD model essentially is a special structured

sparsity model Ak, as in (1), Alg. 1 provides an projection al-

gorithm for this model. Given such a projection algorithm, the

framework of model-based compressive sensing [6] suggests

that iterative support selection algorithms, such as CoSaMP

and IHT, can easily be modified in order to be tailored for

signals belonging to the constrained EMD model. Further, the

modified algorithms are provably stable, as well as provably

achieve successful recovery using fewer measurements than

the conventional (unmodified) algorithms.

We summarize our proposed CS recovery method as Alg.

2; we call it EMD-CoSaMP. The modification is simple:

simply replace the signal thresholding steps (3 and 6) by an

appropriate model projection step. A similar modification of

IHT can also be developed (the description of which we omit);

we will call it EMD-IHT. Below, we empirically illustrate the

benefits of our proposed model-based CS recovery algorithms.
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Algorithm 2 EMD-CoSaMP(Φ, y)

x̂0 ← 0, r ← y, i← 0
while not converged do

1. i← i+ 1
2. e← ΦT r
3. Ω← supp(M(e, 2k, 2B))
4. T ← Ω ∪ supp(x̂i−1)

5. z|T ← Φ†
T y, z|TC = 0

6. x̂i ←M(z, k,B)
7. r ← y − Φx̂i

return x̂← x̂i

Original CoSaMP EMD−CoSaMP

Fig. 3. Benefits of CS reconstruction using EMD-CoSaMP. (left) Original
image with parameters h = 100, w = 10, k = 2, B = 20, m = 80. (center)
CS reconstruction using CoSaMP [8]. (right) CS reconstruction using EMD-
CoSaMP. CoSaMP fails, while our proposed algorithm is able to perfectly
recover the image.

IV. NUMERICAL EXPERIMENTS

In all our experiments, we use the LEMON library [12]

in order to solve the min-cost max-flow subroutine in Alg. 1.

Figure 3 displays a test grayscale image of size 100×10 with

edge discontinuities such that the total sparsity is 2× 10 = 20
and the cumulative EMD across pairs of adjacent columns is

equal to B = 20. We measure linear samples of this image

using merely m = 80 random Gaussian measurements, and

reconstruct using CoSaMP as well our proposed approach

(EMD-CoSaMP). Each iteration of EMD-CoSaMP takes less

than three seconds to execute. As visually evident from Fig. 3,

CoSaMP fails to reconstruct the image, while our proposed

algorithm provides an accurate reconstruction.

Figure 4 displays the results of a Monte Carlo experiment

to quantify the effect of the number of random measure-

ments M required by different CS reconstruction algorithms to

enable accurate reconstruction. Each data point in Fig. 4 was

generated using 100 sample trials over randomly generated

measurement matrices. Successful recovery is declared when

the converged solution is within an ℓ2 distance of 5% relative

to the Euclidean norm of the original image. We observe

that our proposed EMD-CoSaMP and EMD-IHT algorithms

achieve successful recovery with far fewer measurements than

their conventional (unmodified) counterparts.

V. CONCLUSIONS

We have proposed a deterministic structured sparsity model,

and associated model projection algorithm, based on the Earth

Mover Distance (EMD) for signals and images with line
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Fig. 4. Comparison of several reconstruction algorithms. The signal is
the same as in Figure 3. The probability of recovery is with respect to the
measurment matrix and generated using 100 trial runs. The recovery algorithms
using our constrained EMD model have a higher probability of recovery than
standard algorithms.

singularities. We leverage this algorithm to develop a new

compressive sensing (CS) recovery algorithm with significant

numerical benefits. We defer a full theoretical characterization

of our proposed CS recovery algorithm, as well as a thorough

study of practical applications such as seismic shot record

acquisition, to a future expanded version of this work.
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