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Abstract—We describe several algorithms for matrix comple-
tion and matrix approximation when only some of its entries
are known. The approximation constraint can be any whose
approximated solution is known for the full matrix. For low
rank approximations, similar algorithms appear recently in the
literature under different names. In this work, we introduce
new theorems for matrix approximation and show that these
algorithms can be extended to handle different constraints such
as nuclear norm, spectral norm, orthogonality constraints and
more that are different than low rank approximations. As the
algorithms can be viewed from an optimization point of view,
we discuss their convergence to global solution for the convex
case. We also discuss the optimal step size and show that
it is fixed in each iteration. In addition, the derived matrix
completion flow is robust and does not require any parameters.
This matrix completion flow is applicable to different spectral
minimizations and can be applied to physics, mathematics and
electrical engineering problems such as data reconstruction of
images and data coming from PDEs such as Helmholtz’s equation
used for electromagnetic waves.

I. INTRODUCTION

Matrix completion and matrix approximation are important
problems in a variety of fields such as statistics [1], biology
[2], statistical machine learning [3], signal processing and
computer vision/image processing [4]. Rank reduction by ma-
trix approximation is important, for example, in compression
where low rank indicates the existence of redundant informa-
tion and matrix completion is important in collaborative filter-
ing, such as the Netflix problem and different reconstruction
problems. Usually, the matrix completion problem, is defined
as finding a matrix, with smallest possible rank, that satisfy
the existence of certain entries.

minimize rank (X)
subject to Xi,j = Mi,j , (i, j) ∈ Ω.

(I.1)

Since Eq. I.1 is an NP-hard problem, some relaxations meth-
ods have been proposed. The most popular relaxation is one
that replaces the rank by the nuclear norm:

minimize ‖X‖∗
subject to Xi,j = Mi,j , (i, j) ∈ Ω,

(I.2)

where ‖X‖∗ denotes the nuclear norm of X that is equal to
the sum of the singular values of X. A small value of ‖X‖∗ is
related to the property of having a low rank [5]. An iterative
solution, which is based on a singular value thresholding,

is given in [6]. A completion algorithm, based on the local
information of the matrix, is proposed in [7]. In this work,
a more robust and simple approach for solving a variety of
matrix approximation of certain entries by approximating the
full matrix is discussed. We approximate problems of the form

minimize ‖PΩX− PΩM‖F
subject to f(X) ≤ 0,

(I.3)

given that the solution for

minimize ‖X−M‖F
subject to f(X) ≤ 0

(I.4)

is known. Here, {PΩX}i,j = Xi,j if (i, j) ∈ Ω and 0
otherwise. If f(X) is convex and satisfies some condition
(which is explained in the next sections), the algorithm finds
the global solution. Nevertheless, convergence is guaranteed,
but to a local solution. Then, we show how this algorithm can
be used for solving a variety of matrix completion problems
as well, such as spectral norm completion:

minimize ‖X‖2
subject to Xi,j = Mi,j , (i, j) ∈ Ω,

(I.5)

Ky-Fan norm completion:

minimize ‖X‖(k)

subject to Xi,j = Mi,j , (i, j) ∈ Ω,
(I.6)

where ‖X‖(k) =
∑k
i=1 σi (sum of largest k singular values).

Note that the spectral norm and the nuclear norm are a special
case of the Ky-Fan norm. We also discuss approximation
problems such as:

minimize ‖PΩX− PΩM‖F
subject to XTX = I.

(I.7)

II. THEOREMS ON FULL MATRIX APPROXIMATION

The algorithm that approximates a matrix at certain points
requires from us to be able to approximate the matrix when
taking into account all its entries. Therefore, we review some
theorems on full matrix approximation theorems in addition
to the well known Eckart-Young theorem mentioned in the
introduction. The low rank approximation problem can be
modified to approximate a matrix under the Frobenius norm
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while having the Frobenius norm as a constraint as well instead
of having low rank. Formally,

minimize ‖X−M‖F
subject to ‖X‖F ≤ λ.

(II.1)

A solution for Eq. II.1 is given by X = M
‖M‖F min(‖M‖F, λ).

Proof: The expression ‖X‖2F ≤ λ2 can be thought of as
an m×n dimensional ball with radius λ centered at the origin.
M is an m×n dimensional point. We are looking for a point X
on the ball ‖X‖2F = λ2 that has a minimal Euclidean distance
(Frobenius norm) from M. If ‖M‖F ≤ λ then X = M and
it is inside the ball having a distance of zero. If ‖M‖F > λ,
then the shortest distance is given by the line going from the
origin to M whose intersection with the sphere ‖X‖2F ≤ λ2

is the closest point to M. This point is given by X = M
‖M‖Fλ.

An alternative approach uses the Lagrange multiplier in
a brute-force manner. This leads to a non-linear system of
equations, which are difficult to solve. Note that this problem
can be easily extended to the general case

minimize ‖PX− PM‖F
subject to ‖X‖F ≤ λ.

(II.2)

Proof: The proof is similar to the previous one but here
we are looking for a point X on the sphere that is the closest
to a line whose points X′ ∈ H satisfy PX′ = PM. By geo-
metrical considerations, this point is given by X = PM

‖PM‖F λ.

Hence, we showed a closed form solution for the problem in
Eq. II.2.
Another example is the solution to the problem:

minimize ‖X−M‖F
subject to XTX = I.

(II.3)

This is known as the orthogonal Procrustes problem ( [8])
and the solution is given by X = UV∗, where the SVD of
M is given by M = UΣV∗. The solution can be extended to
a matrix X satisfying XTX = D2, where D is a known or
unknown diagonal matrix. When D is unknown, the solution
is the best possible orthogonal matrix. When D is known, the
problem can be converted to become the orthonormal case (Eq.
II.3) by substituting X = VD where VTV = I. When D is
unknown, the problem can be solved by applying an iterative
algorithm that is described in [9].

We now examine the following problem:

minimize ‖X−M‖F
subject to ‖X‖2 ≤ λ.

(II.4)

A solution to this problem uses the Pinching theorem ( [10]):

Lemma II.1 (Pinching theorem). For every matrix A and a
unitary matrix U and for any norm satisfying ‖UAU∗‖ =
‖A‖ then ‖diag(X)‖ ≤ ‖X‖.

A proof is given in [12]. An alternative proof is given in
[14].

Lemma II.2 (Minimization of the Frobenius norm under the
spectral norm constraint). Assume the SVD of M is given by
M = UΣV∗ where Σ = diag(σ1, .., σn). Then, the matrix
X, which minimizes ‖X−M‖F such that ‖X‖2 ≤ λ, is given
by X = UΣ̃V∗ where σ̃i are the singular values of Σ̃ and
σ̃i = min(σi, λ), i = 1, . . . k, k ≤ n.

Proof: ‖X−M‖F = ‖X−UΣV∗‖F =
‖U∗XV −Σ‖F . Since Σ is diagonal,
‖diag(U∗XV)−Σ‖F ≤ ‖U∗XV −Σ‖F . From Lemma
II.1 we know that ‖diag(U∗XV)‖2 ≤ ‖U∗XV‖2.
Therefore, U∗XV has to be diagonal and the best
minimizer under the spectral norm constraint is
achieved by minimizing each element separately yielding
U∗XV = diag(min(σi, λ)), i = 1, . . . k, k ≤ n. Hence,
X = UΣ̃V∗.

The same argument that states that U∗XV has to be
diagonal, can also be applied when the constraint is given by
the nuclear norm. Define Σ̃ = U∗XV. We wish to minimize
‖Σ̃ −Σ‖F =

∑
i (σ̃i − σi)2 s.t. ‖X‖∗ = ‖Σ̃‖∗ =

∑
i |σ̃i| ≤

λ, i = 1, . . . k, k ≤ n. Note that σ̃i has to be nonnegative
otherwise it will increase the Frobenius norm but will not
change the nuclear norm. Hence, the problem can now be
formulated as:

minimize
∑
i (σ̃i − σi)2

subject to
∑
i σ̃i ≤ λ,

σ̃i ≥ 0.
(II.5)

This is a standard convex optimization problem that can be
solved by methods such as semidefinite programming [11].
The exact same can be done to the Ky-Fan norm.

III. APPROXIMATION OF CERTAIN ENTRIES

Suppose we wish to approximate only certain entries of the
matrix, under different constraints, i.e. we are interested in
solving Eq. I.3, given that the solution of Eq. I.4 is known and
given by DM, where D is the solution operator. For example,
if the constraint is rank(X) ≤ k DX is the truncated SVD
of X containing the first k singular values. Note that D is
not necessarily convex. We examine the following iterative
algorithm:

Xn+1 = D(Xn − P(Xn −M)). (III.1)

Eq. III.1 can be considered as a projected gradient algorithm
with unit step size, where the projection is given by D.

Theorem III.1 (Local Convergence). : Let ε(Xn) = ‖PXn−
PM‖F be the error at the nth iteration, then ε(Xn) is
monotonically decreasing, and because it is bounded the
algorithm converges.

The proof for Theorem III.1 is given in [14]. Theorem III.1
does not say anything about convergence to the global solution.
However, when the projection D is convex and self adjoint
(D = D∗) and the algorithm is modified to have adaptive step
size, that is:

Xn+1 = D(Xn − µnP(Xn −M)), (III.2)
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and µn = µ̃2−l[n] is computed by Armijo rule in a greedy
form, minimizing the error in every iteration:

l[n] = min{j ∈ Z≥0 : f(Xn,j)
≤ f(Xn)− σtrace(∇f(Xn)T (Xn − Zn,j))},

and Zn,j = D(Xn − µ̃2−j∇f(Xn)),
(III.3)

where f(X) = 1
2‖PX−PM‖2F , µ̃ > 0 and σ ∈ (0, 1), Then

the algorithm is guarantee to achieve the global solution [13].
This approach has two major problems:
• For the cases of interest, the operators for truncating the

nuclear and spectral norm, are not self-adjoint (D 6= D∗)
• This approach requires applying the Armijo rule in every

iteration. This means several applications of the operator
D in each iteration which is usually computationally
expensive.

As for the first point, requiring the projection D to be
self-adjoint can be slightly more than needed for the global
convergence proof in [13]. This requirement is needed in order
to satisfy 〈X − Y,DX −X〉 ≥ 0 for Y = DY , which always
holds when D = D∗, but also when D is as we defined in
Lemma II.2 and Eq. II.5.

Theorem III.2. Let D be the following projection (defined
as in Lemma II.2): Given the SVD of X is X = USV∗, we
define DλX = US̃V ∗ where s̃i =min(si, λ). Then, for every
matrices X and Y such that Y = DY, 〈X−Y,DX−X〉 ≥ 0

Proof: The condition 〈X − Y,DX − X〉 ≥ 0 can be
reformulated as

〈X,X−DX〉 ≥ 〈Y,X−DX〉, (III.4)

where ‖Y ‖2 ≤ λ.
First, note that the value of the right hand side is maximal

when Y and X−DX have the same angle (Cauchy-Schwartz
inequality). Hence, we define: X = USXV∗, Y = US̃Y V∗

and DX = US̃XV∗. The tilde is for indicating that the
singular values of S̃ are smaller or equal to λ.

We start by evaluating the left side of Eq.III.4:

〈X,X−DX〉 = trace[SX(SX − S̃X)] =
∑
i

sxi(sxi − s̃xi).

(III.5)
Now, for sxi

≤ λ we get (sxi
− s̃xi

) = 0. Hence, only when
sxi

> λ the sum grows and the expression can be rewritten
as: 〈X,X−DX〉 =

∑
sxi

>λ sxi(sxi − s̃xi)
We now observe the right side of Eq. III.4:

〈Y,X−DX〉 = trace[S̃Y (SX − S̃X)] =
∑
i

s̃yi(sxi
− s̃xi

).

(III.6)
Again, the elements that contribute to the sum are those for
which sxi > λ. Hence, on the right side we obtained: 〈Y,X−
DX〉 =

∑
sxi

>λ s̃yi(sxi − s̃xi).
Both expressions can be thought of as a sum of the positive

elements (sxi
− s̃xi

) with different coefficients. Both series
have the same length (sxi > λ) but the coefficient on the left
side is sxi for i’s that give sxi > λ and the right hand series

coefficients are by definition (since ‖Y‖2 ≤ λ) smaller than
λ. Therefore, the sum of the left side is bigger than the sum
of the right side. This completes the proof.

This means that for the spectral norm, the algorithm con-
verges to the global solution. The exact same proof can be
done for the nuclear norm and Ky-Fan norm as well, showing
the algorithm converges to global solution.

Theorem III.3 (Optimal step size). For the matrix approxi-
mation problem (Eq. I.3) with convex D, the optimal step size
is given by µn = 1.

The proof of Theorem III.3 is given in [14]. Note that this
holds for any case of projected gradient involving orthogonal
axes. Theorem III.3 states that in our case, when having a
convex constraint and projection, then Eq. III.1 converges
to the global solution. This means, that now we can solve
a variety of matrix approximation problem with reasonable
computation rate. Note, that we have shown that in some cases,
global solution is achieved even when the projection is not
self-adjoint (orthogonal). The next section shows, how this
very simple algorithm, can be applied to matrix completion
problems as well.

IV. MATRIX COMPLETION

Matrix completion is an important problem that has been
investigated extensively. The matrix completion problem dif-
fers from the matrix approximation problem by the fact that
the known entries must remain fixed while changing their role
from the objective function to be minimized to the constraint
part. A well investigated matrix completion problem appears
in the introduction as the rank minimization problem. Because
rank minimization is not convex and NP-hard, it is usually
relaxed for the nuclear norm minimization. Since for the
convex case, we have seen that Eq. III.1 converges to the
global solution, matrix completion can be achieved simply
by using binary search. The advantage of this approach over
other different approaches, which minimize the nuclear norm
for example, is that it is general and can be applied to other
problems that were not addressed such as minimizing the
spectral norm. Moreover, some algorithms such as the Singular
Value Thresholding (SVT) [6] require additional parameters τ
and δ that affect the convergence and the final result, where
in this approach no external parameters are required (except
for tolerance for determining convergence).

This approach is detailed in Algorithm IV.1, which is robust
and does not require any tuning, other than tolerance threshold
for determining convergence. Algorithm IV.1 can be used for
a matrix completion under a variety of constraints.

Fig. IV shows Algorithm IV.1 results over a corrupted
image. In the corrupted image, squares of size 3 × 3 were
randomly removed from the image, destroying 18% of it. The
reconstruction is more difficult, since the damage is in squares
and not just irregular points. The original image nuclear norm
is 51, 625, the corrupted nuclear norm is 96, 500 and the norm
of the completed matrix is 50, 418. Minimizing nuclear norm
for image reconstructing is a well known method, as images

Proceedings of the 10th International Conference on Sampling Theory and Applications

442



Algorithm IV.1: Matrix Completion using Nuclear Norm
/ Spectral Norm Minimization

Input: M - matrix to complete, P - projection operator
that specifies the important entries,
tol - admissible approximation error, λtol - admissible
constraint accuracy
Output: X - Completed matrix

1: M← PM
2: λmin ← 0
3: λmax ← ‖M‖∗ (or ‖M‖2 for the spectral norm)
4: λ← 0
5: repeat
6: λprev ← λ
7: λ← (λmin + λmax)/2
8: X← Approximate PM s.t. ‖X‖∗ ≤ λ (or ‖X‖2 ≤ λ

for the spectral norm case)
9: error ← ‖PX− PM‖F

10: if error > tol then
11: λmin ← λ
12: else
13: λmax ← λ
14: end if
15: until error < tol and |λ− λprev| < λtol
16: return X

Fig. IV.1. Singular values comparison between the different images.

usually have a low numerical rank as the singular values decay
very fast. It can be seen in Fig. IV that the singular values of
the reconstructed image, are almost identical to the original.
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Fig. IV.2. Corrupted dog image and the reconstructed image.
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