
Using Affinity Perturbations to Detect
Web Traffic Anomalies

Yaniv Shmueli
School of

Computer Science
Tel Aviv University

yaniv.shmueli@cs.tau.ac.il

Tuomo Sipola
Department of

Mathematical Information Technology
University of Jyväskylä

tuomo.sipola@jyu.fi

Gil Shabat
School of

Electrical Engineering
Tel Aviv University

gil@eng.tau.ac.il

Amir Averbuch
School of

Computer Science
Tel Aviv University
amir@math.tau.ac.il

Abstract—The initial training phase of machine learning al-
gorithms is usually computationally expensive as it involves the
processing of huge matrices. Evolving datasets are challenging
from this point of view because changing behavior requires
updating the training. We propose a method for updating the
training profile efficiently and a sliding window algorithm for
online processing of the data in smaller fractions. This assumes
the data is modeled by a kernel method that includes spectral
decomposition. We demonstrate the algorithm with a web server
request log where an actual intrusion attack is known to
happen. Updating the kernel dynamically using a sliding window
technique, prevents the problem of single initial training and can
process evolving datasets more efficiently.

Index Terms—perturbation theory, eigenvalue problem, dif-
fusion maps, dimensionality reduction, anomaly detection, web
traffic

I. INTRODUCTION

Evolving data that requires frequent updates to the training
is a challenging target when extracting constructive infor-
mation. The computational complexity of the training phase
increases with such datasets because an earlier profile may
not accurately represent the behavior of current data. There-
fore, the extracted profile has to be updated frequently. A
straightforward approach for updating the training profile is
to repeat the entire computational process that generated
the original profile. This paper summarizes a method for
efficiently updating the evolving profile.

A common practice in kernel methods is to extract features
from a high dimensional dataset, and to form a similarity graph
between the features in the dataset. In this research we apply
the Diffusion Maps (DM) methodology [1] to a web traffic
log. DM finds the embedded coordinates for a low-dimensional
representation of the data. This embedding is accomplished by
eigenvectors computation of the graph affinity matrix. Changes
in the affinity matrix will result in changes in the eigenvectors,
and thus will force us to compute them frequently. We use
a solution based on the Recursive Power Iteration algorithm
combined with the first-order approximation of the perturbed
eigenvectors and eigenvalues (eigenpairs) [2]. This enables us
to update the dataset profile by considering only the changes
in the original dataset, which also requires less computational
effort.

Since network data is dynamic and evolving, the embedded

low-dimensional space has to be updated as the training data
does not adequately represent the incoming data that did not
participate in the initial training phase. Even if most of the
network log lines in our interest window are unchanged, we
will still need to perform the entire computation since we
cannot determine the effect of such a change on the embedded
space. Therefore, the goal of the paper is to provide an efficient
method for updating the embedding coordinates without the
need to re-compute the entire SVD again and again over time.
We treat the log line feature changes as perturbations from
the original network log profile of the feature affinity matrix.
By applying a sliding window technique to the incoming
network data, we are able to process the data online, and
keep embedding it in the low-dimensional space. We test this
method on real web traffic data and compare our results to the
true classification.

II. RELATED WORK

Traditional computational methods such as the power it-
eration, inverse iteration and Lanczos methods operate in
the same way and compute the eigenpairs of each update
of the perturbed matrix. Here, the computation is performed
with a random guess as the initial input without taking the
unperturbed matrix and its eigenpairs into consideration.

Incremental versions of low-dimensional embedding al-
gorithms have been tailored specifically to fit local linear
embeddings (LLE) [3] and ISOMAP [4]. These algorithms
use modified manifold learning methods to process the data
iteratively. When a new data point arrives, these algorithms
add it to the embedding and then efficiently update all the
existing data points in the low-dimensional space.

Network security has been one focus among the machine
learning community. Kruegel and Vigna studied the parameters
of HTTP queries using a training step with unlabeled data with
various methods. Their character distribution analysis uses
similar feature extraction as our current study [5]. Hubballi
et al. described an n-gram approach to detect intrusions
from network packets [6]. Ringberg et al. studied IP packets
using principal component analysis-based dimensionality re-
duction [7]. Callegari et al. analyzed similar low-level packet
data [8].

Proceedings of the 10th International Conference on Sampling Theory and Applications

444

Diffusion maps have been also used for network security
problems. David studied the use of diffusion map methodology
for detecting intrusions in network traffic [9]. Network server
logs have also been studied with diffusion maps with an offline
approach using n-gram features and spectral clustering [10]. In
these works, data analysis was performed in a batch fashion,
processing all recordings as a single, offline dataset.

III. FINDING A LOW-DIMENSIONAL EMBEDDED SPACE

A. Diffusion Maps

Finding a low-dimensional embedded space is an important
step in understanding high-dimensional data more profoundly.
To better understand the proposed algorithm, we review the
DM methodology [1] that performs non-linear dimensionality
reduction. Given our web log feature matrix X , we define a
weighted graph over the log lines, where the weight between
lines i and j is given by the kernel k(i, j) , e−

‖xi−xj‖
ε .

The degree of a log line (vertex) i in this graph is d(i) ,∑
j

k(i, j). Normalizing the kernel with this degree produces an

n×n row stochastic transition matrix whose cells are [P]ij =
p(i, j) = k(i, j)/d(i) for log lines i and j. This defines a
Markov process over the network log features.

The dimensionality reduction achieved by this diffusion
process is a result of the spectral analysis of the kernel. Thus,
it is preferable to work with a symmetric conjugate to P that
we denote by A and its cells are denoted by

[A]ij = a(i, j) =
k(i, j)√
d(i)

√
d(j)

=
√
d(i)p(i, j)

1√
d(j)

. (1)

The eigenvalues 1 = λ1 ≥ λ2 ≥ . . . of P and their
corresponding eigenvectors vk (k = 1, 2, . . .) are derived from
the eigenvectors uk of A. The vk are used to obtain the desired
dimensionality reduction by mapping each i onto the data point
Ψ(i) = (λ2v2(i), λ3v3(i), ..., λδvδ(i)) for a sufficiently small
δ, which depends on the decay of the spectrum of A [1].

In matrix notation, the operator A is defined as A =
D−

1
2KD−

1
2 = D

1
2PD−

1
2 where D is the diagonal matrix

containing the d(i) value in cell Dii. To retrieve the eigenvec-
tors in columns V of P from the eigenvactors of A, we use
the transformation V = D−

1
2U where U is the eigenvector

column matrix of A. The eigenvectors V obtained for P are
scaled by dividing each one by the first value of the first
eigenvector.

B. Updating the Embedding

Once we have the DM embedding of the initial matrix A,
we need to keep updating the embedding for the next arriving
samples. By replacing the oldest samples with the newly
arriving ones, we can model such a change as a perturbation
matrix Ã of the matrix A. We assume that the perturbations are
sufficiently small, that is, ‖Ã−A‖ < ε for some small ε. Note
that Ã is symmetric since it represents the operator defined
in 1. We wish to update the eigenpairs of Ã based on A and
its eigenpairs. We now present the problem in mathematical
terms.

Given a symmetric n × n matrix A where its k dominant
eigenvalues are λ1 ≥ λ2 ≥ ... ≥ λk and its eigenvectors are
φ1, φ2, ..., φk, respectively, and a perturbed matrix Ã such that
‖Ã−A‖ < ε, find the perturbed eigenvalues λ̃1 ≥ λ̃2 ≥ ... ≥
λ̃k and its eigenvectors φ̃1, φ̃2, ..., φ̃k of Ã in the most efficient
way [2].

In the next section, we explain how such processing can be
done using the recursive power iteration (RPI) algorithm.

IV. THE RECURSIVE POWER ITERATION (RPI)
ALGORITHM

A. Eigenpair First-Order Approximation

To efficiently update each eigenpair of the perturbed matrix
Ã, we first compute the first-order approximation of each
eigenpair. Later, it will be used in our algorithm as the initial
guess for the RPI algorithm.

Given an eigenpair (φi, λi) of a symmetric matrix A where
Aφi = λiφi, we compute the first-order approximation of the
eigenpair of the perturbed matrix Ã = A + ∆A. We assume
that the change ∆A is sufficiently small, which results in a
small perturbation in φi and λi. We look for ∆λi and ∆φi
that satisfy the equation

(A+ ∆A)(φi + ∆φi) = (λi + ∆λi)(φi + ∆φi). (2)

Using the methods described by Shmueli et al. [2], we can
obtain the following first-order approximations for the eigen-
values and eigenvectors of Ã

λ̃i = λi + φTi [∆A]φi (3)

and

φ̃i = φi +
∑
j 6=i

φTj [∆A]φi

λi − λj
φj . (4)

B. The Recursive Power Iteration Method

The power iteration method has proved to be effective
when calculating the principal eigenvector of a matrix [11].
However, this method cannot find the other eigenvectors of the
matrix. In general, an initial guess of the eigenvector is also
important to guarantee fast convergence of the algorithm. In
Algorithm IV.1, which we call recursive power iteration (RPI),
the first-order approximations of the perturbed eigenvectors
of Ã are the initial guess for each power iteration. Once the
eigenvector φ̃i is obtained in step i, we transform Ã into a
matrix that has φ̃i+1 as its principal eigenvector. We iterate
this step until we recover the k dominant eigenvectors of Ã.

The correctness of the RPI algorithm and its complexity
analysis are given in the original article [2].

The justification for this approach is that the first-order
approximation of the perturbed eigenvector is inexpensive, and
each RPI step guarantees that this approximation converges
to the actual eigenvector of Ã. The first-order approximation
should be close to the actual solution we seek and therefore
requires fewer iteration steps to converge.

Proceedings of the 10th International Conference on Sampling Theory and Applications

445

Algorithm IV.1: Recursive Power Iteration Algorithm

Input: Perturbed symmetric matrix Ãn×n, number of
eigenvectors to calculate k, initial eigenvectors
guesses {vi}ki=1, admissible error err

Output: Approximated eigenvectors
{
φ̃i

}k
i=1

,

approximated eigenvalues
{
λ̃i

}k
i=1

1: for i = 1→ k do
2: φ← vi
3: repeat
4: φnext ← Ãφ

‖Ãφ‖
5: errφ ← ‖φ− φnext‖
6: φ← φnext
7: until errφ ≤ err
8: φ̃i ← φ

9: λ̃i ← φ̃T
i Ãφ̃i

φ̃T
i φ̃i

10: Ã← Ã− φ̃iλ̃iφ̃Ti
11: end for

V. SLIDING WINDOW DIFFUSION MAP

Using DM to embed high volumes of data can be compu-
tationally intensive. It is even more challenging when the data
is generated online and needs to be processed continuously.
Therefore, we try to process the incoming data with iterative
methodology by using the sliding window model. A sliding
window X takes into account the n latest measurements. In
practice, it is an n ×m matrix with features on the columns
and samples on the rows. The samples are high-dimensional,
so the dimensionality of the sliding window is reduced from
m to d using DM. This n × d matrix Xr now contains the
low-dimensional representation of the data. This reduction
is done each time a new sample appears and the window
moves. However, the consecutive update of the DM is a time-
consuming process that requires singular value decomposition
during each window.

When updating the window, we can replace the oldest
measurement with a new one in the matrix X , therefore
changing a single row in X . This means that one line and
one column of the K matrix in the DM algorithm change.
This change can be interpreted as a perturbation to the matrix
K, and furthermore to the matrix A, which is defined using the
K matrix. The RPI algorithm with first-order approximation
solves the eigenvectors for perturbed matrices. This leads us
to use the RPI algorithm instead of time-consuming SVD.

Algorithm V.1 outlines the sliding window DM method.
First, it solves the eigenvectors for the initial window using
SVD. Then the algorithm iteratively process the following
windows until no new samples are available.

There are, some practical problems with this approach. First,
the RPI algorithm might not be able to solve the eigenvectors
for some low-rank matrices. It is possible to prevent this
with standard SVD when a low-rank (or otherwise unsuitable)
matrix is encountered. Second, the window size itself has to be

Algorithm V.1: Sliding Window Diffusion Map with RPI
Input: Dataset X , window width n, embedded dimension k,

admissible error err.
Output: Anomaly score for points in X .
ε← estimate kernel parameter for first window of size n.
[K]ij ← exp

(
− ||xi−xj ||2

ε

)
, where i, j = 1 . . . n

D ← diag(
∑n
i=1[K]ij)

A← D−
1
2KD−

1
2

U,Λ, UT ← SVD(A)
while new sample xt available, where t > n do
l← t mod n
Replace the row l in X with the new sample xt.
Update both row l and column l of the affinity matrix
K.
D ← diag(

∑n
i=1[K]ij)

Ã← D−
1
2KD−

1
2

U,Λ← RPI with first-order approximation
(Ã, A, k, U,Λ, err)
V ← D−

1
2U

V ← V
V1,1

Ψ← V Λ
Find anomalies in Ψ and rate all samples in X .
A← Ã

end while
Return aggregated anomaly scores for each sample in X .

decided. The changing scales of the data over time introduce a
challenge to the sliding window algorithm. The initial window
still determines the profile and scale for the beginning of the
analysis. Big windows cover a larger representation of the
data and thus include a more varied overview of the normal
behavior. With smaller windows, the percentage of anomalies
within the data might get too big, and detecting the normal
state becomes more difficult. Small windows, however, require
less computational time since they induce smaller matrices.
Optimal window size would therefore be the smallest possible
that contains a small enough percentage of anomalies within
the data, enabling it to capture the normal samples correctly.

Detecting the anomalies in the low-dimensional representa-
tion can be done in various ways. A straightforward approach
is to calculate distances between the embedded samples and
find the ones that deviate too far from the center of the dataset.
This and other spectral clustering methods give good results
for datasets that contain clear separation [12], [10]. Similarly,
k-means or any other clustering algorithm can find possible
normal as well as anomalous behavior in the data. The density
of points in the low-dimensional space tells how far they are
from the more clustered areas. These methods calculate the
distances to neighboring points [9]. All these methods usually
need a threshold value for the anomalous region.

In each iteration, we evaluate the anomaly level of the
samples within the window. Each sample gets a score if it
is classified as an anomaly according to the selected anomaly

Proceedings of the 10th International Conference on Sampling Theory and Applications

446

detection method. The scores of each sample are added as the
window moves. This cumulative anomaly score histogram may
be used to determine the anomaly level of a point. Scoring is
used because locally inside a window some samples might
appear anomalous but globally, considering the whole dataset,
they are not. Even if the sample looks like an anomaly in some
windows, it still gets only a few scores globally.

VI. EXPERIMENTAL RESULTS

For the experiment, we use a labeled proprietary dataset
of queries to a web server, which is known to contain some
network attacks. These web queries are in Apache combined
log text file. To extract numerical features from this text file,
only the changing parameter values are used. The frequencies
of 2-grams in these parameters are calculated to a matrix. In
this matrix, the rows represent the log lines, and the columns
represent the different 2-grams we found. The entries in this
matrix count how many times each specific 2-gram appeared
in the parameters of a log line. See [10] for more information
about this dataset and the feature extraction.

The web log we use has 4292 lines and contains 480
different 2-grams. Thus, the feature matrix has dimensions
4292 × 480. The experiment simulates the initial state when n
samples, or log lines, have arrived. When a new line arrives,
it is added to the current window, while the oldest sample
is removed from the matrix. This is continued until no new
samples are available. The algorithm tracks only the samples
within the window so that the dynamically changing nature of
the data can be followed. As the size of the window does not
change, the eigenpair problem stays reasonably sized.

Anomaly detection with Euclidian distances finds the most
deviating samples within a window. This leads to false alarms
when using simple normalized anomaly metrics because inside
a window a point might look anomalous. Its local abnormality
might be evident, but it should not be classified as one since
globally it is just a small deviation from the normal state. This
fact promotes thresholding the non-normalized but centered
low-dimensional representation dk = |Ψk−mean(Ψk)| within
one window using statistical threshold θk = c · std(dk),
where the parameter c has to be adjusted empirically, for each
dimension k in the embedded space.

Figure 1 illustrates the scores each point gets as the sliding
window moves. The number of times the data points are
classified anomalous are plotted against time. The window
width is set to n = 1000. This experiment uses only the second
eigenpair, k = 2, Ψ2 for the low-dimensional presentation.
In our analysis, we use a value of c = 10 for the anomaly
threshold calculation. These scores themselves indicate in how
many windows each sample is considered anomalous: the data
points that are considered attacks are clearly seen from 2500
to 3500. Notice that a sample might be considered anomalous
in several windows, but in the global view it is not an anomaly.
Therefore, we use another threshold, which is the horizontal
red line in the figure. With this setup, we manage to reach an
accuracy of 92.5% and a precision of 99.7% after tuning the
parameters of the algorithm.

Fig. 1. The scores for each point with window size 1000 using the second
eigenvector. The more times the data point is classified anomalous, the higher
the score.

ACKNOWLEDGMENTS

This research was supported by the Israel Science Foundation
(Grant No. 1041/10) and by the Foundation of Nokia Corpo-
ration. The authors thank Antti Juvonen for assisting with the
data analysis and Tapani Ristaniemi for guidance and support.

REFERENCES

[1] R. R. Coifman and S. Lafon, “Diffusion maps,” Applied and Computa-
tional Harmonic Analysis, vol. 21, no. 1, pp. 5–30, 2006.

[2] Y. Shmueli, G. Wolf, and A. Averbuch, “Updating kernel methods in
spectral decomposition by affinity perturbations,” Linear Algebra and
its Applications, vol. 437, no. 6, pp. 1356–1365, 2012.

[3] O. Kouropteva, O. Okun, and M. Pietikäinen, “Incremental locally linear
embedding algorithm,” Image Analysis, pp. 145–159, 2005.

[4] M. Law and A. Jain, “Incremental nonlinear dimensionality reduction
by manifold learning,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 28, no. 3, pp. 377–391, 2006.

[5] C. Kruegel and G. Vigna, “Anomaly detection of web-based attacks,” in
Proceedings of the 10th ACM conference on Computer and communi-
cations security. ACM, 2003, pp. 251–261.

[6] N. Hubballi, S. Biswas, and S. Nandi, “Layered higher order n-grams for
hardening payload based anomaly intrusion detection,” in Availability,
Reliability, and Security, 2010. ARES’10 International Conference on.
IEEE, 2010, pp. 321–326.

[7] H. Ringberg, A. Soule, J. Rexford, and C. Diot, “Sensitivity of PCA for
traffic anomaly detection,” ACM SIGMETRICS Performance Evaluation
Review, vol. 35, no. 1, pp. 109–120, 2007.

[8] C. Callegari, L. Gazzarrini, S. Giordano, M. Pagano, and T. Pepe,
“A novel PCA-based network anomaly detection,” in Communications
(ICC), 2011 IEEE International Conference on. IEEE, 2011, pp. 1–5.

[9] G. David, “Anomaly Detection and Classification via Diffusion Pro-
cesses in Hyper-Networks,” Ph.D. dissertation, Tel-Aviv University,
2009.

[10] T. Sipola, A. Juvonen, and J. Lehtonen, “Anomaly detection from
network logs using diffusion maps,” in Engineering Applications of
Neural Networks, ser. IFIP Advances in Information and Communication
Technology, L. Iliadis and C. Jayne, Eds. Springer Boston, 2011, vol.
363, pp. 172–181.

[11] A. Langville and C. Meyer, “Updating markov chains with an eye on
google’s pagerank,” SIAM journal on matrix analysis and applications,
vol. 27, no. 4, pp. 968–987, 2006.

[12] U. von Luxburg, “A tutorial on spectral clustering,” Statistics and
Computing, vol. 17, pp. 395–416, 2007.

Proceedings of the 10th International Conference on Sampling Theory and Applications

447

