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Abstract—The paper deals with the construction of Parseval
frames for L2(B(0, R)), the space of square integrable functions
whose domain is the ball of radius R. The focus is on Fourier
frames on a spiral. Starting with a Fourier frame on a spiral, a
Parseval frame that spans the same space can then be obtained
by a symmetric approximation of the original Fourier frame.

I. INTRODUCTION
Earlier work by Benedetto et al. [1], [2], [3], [4] gave the

construction of a set of points on a given spiral such that these
points give rise to a frame for L2(B(0, R)), the space of all
square integrable functions on the ball centered at the origin
and of radius R. This means that given a spiral Ac, the authors
in [1], [2], [3], [4] were able to construct a sequence of points
Λ on this spiral and its interleaves such that every signal f
belonging to L2(B(0, R)) can be written as

∑
λ∈Λ aλ(f)eλ

where eλ(x) = e2πix·λ. The incentive of choosing points
on a spiral comes from the applicability in MRI (Magnetic
Resonance Imaging) where a signal is sampled in the Fourier
domain along interleaving spirals, resulting in fast imaging
methods. For practical purposes, the reconstruction of signals
using such infinite frames entails inverting the frame operator
and/or using only finitely many samples. Such numerical is-
sues are mitigated if one can use a tight frame. The possibility
of expanding a function as a non-harmonic Fourier series was
discovered by Paley and Wiener. For a sequence Λ of real
numbers, it is natural to ask whether every band-limited signal
with spectrum E can be reconstructed in a stable way from
its samples {F (λ),λ ⊆ Λ}. Landau [5] proved a necessary
condition for {e2πix·λ,λ ∈ Λ} to be a frame for the space
of band-limited functions with spectrum E by relating the
lower density of Λ to the measure of E. There is an extensive
literature on the stable reconstruction problem, (see, e.g., [6],
[7], [8], [9], [10], [11]). Many of the contributions to this
area focus on the theoretical aspect, while our emphasis is on
explicit construction.
The main contribution of this article is to give an explicit

procedure to convert a frame which is not a tight frame into a
Parseval frame, with the requirement that each element in the
resulting Parseval frame can be expressed as a linear combina-
tion of the elements in the original frame. To be precise, this
requirement means that if {f1, f2, f3} is the original frame for
the Hilbert space H, and {g1, g2, g3} is the resulting Parseval
frame, then each gn is a linear combination of f1, f2, f3.
For any function f ∈ H, one has f =

∑3
n=1〈f, gn〉gn.

Since each gn is a linear combination of f1, f2, and f3, each
number 〈f, gn〉 can be calculated from the three numbers
〈f, f1〉, 〈f, f3〉, 〈f, f3〉. Hence, from the numbers 〈f, fn〉 for
n = 1, 2, 3, one can recover f . In the reconstruction formula
using the Parseval frame, only the measurements obtained
from the original frame are needed. This feature is extremely
important, especially in the aforementioned application to
MRI, when the measurements from the original frame are the
only available measurements. The procedure explained in this
article applies to other frames, and not just to Fourier frames,
but motivated by applications to medical imaging as in MRI,
the focus here is only on spiral sampling with Fourier frames.
In [12], Frank, Paulsen, and Tiballi obtain a Parseval frame

from a given frame that spans the same subspace as the
original frame and is closest to it in some sense, which they
call symmetric approximation. The approach used in [12] is to
use the polar decomposition of the synthesis operator of the
original frame. This idea inspires the method developed in the
present work to obtain Parseval frames for the spiral sampling
case. Presently, the work is only focused on finite frames. The
symmetric approximation of infinite Fourier frames on spirals
and the best N -term approximation of such frames constitute
ongoing research.

A. Notation and preliminaries

Let Rd be the d-dimensional Euclidean space, and let R̂d

denote Rd when it is considered as the domain of the Fourier
transforms of signals defined on Rd. L2(R̂d) is the space of
square integrable functions φ on R̂d, i.e.,

||φ||L2(R̂d) =

(∫

R̂d

|φ(γ)|2dγ
)1/2

< ∞,

φ∨ is the inverse Fourier transform of φ defined as

φ∨(x) =

∫

R̂d

φ(γ)e2πix·γdγ,

and supp φ∨ denotes the support of φ∨. Let E ⊆ R̂d be
closed. The Paley-Wiener space PWE is

PWE = {φ ∈ L2(R̂d) : supp φ∨ ⊆ E}.

Let H be a separable Hilbert space. A sequence {fn : n ∈
Zd} ⊆ H is a frame for H if there exist constants 0 < A ≤
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B < ∞ such that
∀y ∈ H, A||y||2 ≤

∑

n

|〈y, fn〉|
2 ≤ B||y||2.

The constants A and B are called the lower and upper frame
bounds, respectively. If A = B, the frame is said to be tight
and if A = B = 1, the frame is called a Parseval frame. Let
{fn} be a frame for H. The synthesis operator is the linear
mapping T : $2 → H given by T ({ci}) =

∑
k ckfk. The

frame operator S : H → H is TT ∗ and is given by

∀y ∈ H, S(y) =
∑

n

〈y, fn〉fn.

For every y ∈ H,

y =
∑

n

〈y, S−1fn〉fn =
∑

n

〈y, fn〉S
−1fn.

For more on frames one can look at [13] or [14].
Let Λ ⊆ R̂d be a sequence and let E ⊂ Rd have finite

Lebesgue measure. By the Parseval Formula, the following
are equivalent ([3], [4]).
(i) {eλ : λ ∈ Λ} is a frame for L2(E).
(ii) There exist 0 < A ! B < ∞ such that

A||φ||22 !
∑

λ∈Λ

|φ(λ)|2 ! B||φ||22,

for all φ in PWE . In this case, we say that Λ is a Fourier
frame for PWE .

A set Λ is uniformly discrete if there exists r > 0 such that
∀λ, γ ∈ Λ, |λ− γ| ≥ r,

where |λ− γ| is the Euclidean distance between λ and γ.
If for two frames {fi}i∈N and {gi}i∈N of two Hilbert

subspacesK and L ofH, respectively, there exists an invertible
bounded linear operator T : K → L such that T (fi) = gi
for every index i, then these two frames are said to be
weakly similar [12]. A Parseval frame {νi}ni=1 in a finite
dimensional Hilbert subspace L ⊆ H is said to be a symmetric
approximation of a finite frame {fi}ni=1 in a Hilbert subspace
K ⊆ H if the frames {fi}ni=1 and {νi}ni=1 are weakly similar
and the inequality

n∑

j=1

‖µj − fj‖
2 ≥

n∑

j=1

‖νj − fj‖
2

is valid for all Parseval frames {µi}ni=1 in Hilbert subspaces
of H that are weakly similar to {fi}ni=1 [12]. If K = L, the
frames are called similar.
When a 3 by 3 matrix W is acting on a sequence of

elements {f1, f2, f3}, this action is denoted by {e1, e2, e3} =
W · {f1, f2, f3}, or in matrix notation,




e1
e2
e3



 =




w11 w12 w13

w21 w22 w23

w31 w23 w33








f1
f2
f3



 ,

to denote

e1 =
3∑

j=1

w1jfj , e2 =
3∑

j=1

w2jfj , e3 =
3∑

j=1

w3jfj .

B. Background
The following theorem [1], [2], [3], [4] is based on a deep

result of Beurling [15].

Theorem I.1 (Beurling Covering Theorem). Let Λ ⊆ R̂d be
uniformly discrete, and define ρ = supµ∈R̂d dist(µ,Λ) where
dist(µ,Λ) is the Euclidean distance between the point µ and
the set Λ. If Rρ < 1/4, then Λ is a Fourier frame for
PWB(0,R).

In [1], [2], [3], [4] the authors have used the Beurling
Covering Theorem to give an explicit construction of Fourier
frames from points that lie on a spiral. In particular, the
following result can be found in [2].

Example I.2. Fix c > 0. In R̂2, consider the spiral

Ac = {cθ cos 2πθ, cθ sin 2πθ : θ ≥ 0}.

For R and δ satisfying Rc < 1/2 and ( c2 + δ)R < 1/4, one
chooses a uniformly discrete set of points Λ such that the curve
distance between any two consecutive points is less than 2δ,
and beginning within 2δ of the origin. Then Λ satisfies the
Beurling Covering Theorem and hence gives rise to a Fourier
frame for PWB(0,R).

The synthesis operator T defined in Section I-A is bounded
and has a natural polar decomposition T = W |T |, where W
is a partial isometry from $2 into H. To obtain a symmetric
approximation of a given frame, the following has been shown
in [12].

Theorem I.3. Let {µi}ni=1 be a Parseval frame in a Hilbert
subspace L ⊆ H and let {fi}ni=1 be a frame in a Hilbert
subspace K ⊆ H such that both these frames are weakly
similar. Letting the standard orthonormal basis for Cn be
denoted by {ei}ni=1, the following inequality

n∑

j=1

‖µj − fj‖
2 ≥

n∑

j=1

‖W (ej)− fj‖
2

holds. Equality appears if and only if µj = W (ej) for
j = 1, . . . , n. (Consequently, the symmetric approximation of
a frame {fi}ni=1 in a finite dimensional Hilbert space K ⊆ H
is a Parseval frame spanning the same Hilbert subspace
L ≡ K of H and being similar to {fi}ni=1.)

Similar results for infinite frames in separable Hilbert spaces
have also been established in [12] but for now the focus is on
the finite dimensional case.

II. PARSEVAL FRAMES FROM A FINITE FOURIER FRAME ON
A SPIRAL

Three examples are discussed below. In the first two exam-
ples, the frame under consideration is on R̂. The third example
is for a Fourier frame on a spiral in R̂2.
In the first two examples, the procedure suggested by

Theorem I.3 is modified so that in the final step, matrix
multiplication is replaced by a matrix acting on a sequence
of elements in a Hilbert space.
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Example II.1. Let {f1 = e2πiλ1x, f2 = e2πiλ2x, f3 =
e2πiλ3x} be a frame that spans a subspace of L2([−1/2, 1/2]).
Choose λ1 = 3 + 1

3 ,λ2 = 4 + 1
4 ,λ3 = 5 + 1

5 .

This frame is used to construct a Parseval frame that
spans the same subspace. Let H be the span of {f1, f2, f3}
and let {e1, e2, e3} be an orthonormal basis of H. One can
construct an orthonormal basis {e1, e2, e3} by applying the
Gram-Schmidt orthogonalization process to {f1, f2, f3}. The
resulting orthonormal basis can be written as




e1
e2
e3



 =




1 0 0

−c21 1 0
c21θ − c31 −θ 1








f1
f2
f3



 ,

where

c21 = sinc(λ2−λ1), c32 = sinc(λ3−λ2), c31 = sinc(λ3−λ1),

and

sinc(x) ≡
sin(πx)

πx
, θ =

c32 − c21c31
1− c221

.

Then

f1 = e1,

f2 = c21e1 + e2,

f3 = c31e1 + θe2 + e3,

and the synthesis operator T of the frame {f1, f2, f3} can be
written in matrix form as




1 c21 c31
0 1 θ
0 0 1



 .

Next the polar decomposition of the matrix of T is computed,
so that T = W |T |, where W is a partial isometry and |T | =
(T ∗T )1/2. In this case, since T is invertible, W is in fact a
unitary matrix. Finally, let {g1, g2, g3} = W ∗ · {e1, e2, e3}.
Then {g1, g2, g3} forms a Parseval frame for H.

Remark: (1). In this example, since the original frame
is linearly independent and therefore a basis for H, what
is obtained as a Parseval frame is in fact an orthonormal
basis for H. (2). Since each gn can be written as a linear
combination of f1, f2, and f3, the Parseval frame constructed
indeed spans the same subspace as the original frame.

Example II.2. Let λ1 = 3 + 1
3 ,λ2 = 4 + 1

4 ,λ3 = 5 + 1
5

and let f1 = e2πiλ1x, f2 = e2πiλ2x, f3 = e2πiλ3x, f4 =
f1 + f2, f5 = f1 + f3, and f6 = f2 + f3. Consider the frame
{f1, f2, f3, f4, f5, f6} of a subspace of L2([−1/2, 1/2]). De-
note this subspace by H. Starting from the linearly inde-
pendent set {f1, f2, f3} that spans H, one can construct an
orthonormal basis {e1, e2, e3} for H as done in Example II.1.

From Example II.1,

f1 = e1,

f2 = c21e1 + e2,

f3 = c31e1 + θe2 + e3,

f4 = f1 + f2 = (1 + c21)e1 + e2,

f5 = f1 + f3 = (1 + c31)e1 + θe2 + e3,

f6 = f2 + f3 = (c21 + c31)e1 + (1 + θ)e2 + e3,

where c21, c31, and θ are as defined in Example II.1. The
synthesis operator T has the matrix representation




1 c21 c31 1 + c21 1 + c31 c21 + c31
0 1 θ 1 θ 1 + θ
0 0 1 0 1 1



 .

Let the polar decomposition of T be given by T = W |T |. Let
{g1, g2, g3, g4, g5, g6} = W ∗ · {e1, e2, e3}. Note that W ∗ is a
6 by 3 matrix. Then it can be shown that {gk : 1 ≤ k ≤ 6}
forms a Parseval frame for H.

Example II.3. A Fourier frame of three elements is first con-
structed using Example I.2. Let c = 1, R = 1/4, and δ = 1/4.
Three points on the spiral Ac=1 = {θ cos 2πθ, θ sin 2πθ} that
have arc-length between them less than 2δ, starting with 2δ
from the origin, can be obtained by taking three values of θ
to be θ1 = 1/16, θ2 = 1/8, and θ3 = 1/4. This choice gives
the following three points on the spiral

λ1 = (
1

16
cos

π

8
,
1

16
sin

π

8
) = (0.06, 0.02),

λ2 = (
1

8
cos

π

4
,
1

8
sin

π

4
) = (0.09, 0.09),

and
λ3 = (

1

4
cos

π

2
,
1

4
sin

π

2
) = (0, 1/4).

Thus X = {eλ1
, eλ2

, eλ3
} is a Fourier frame for

span{eλ1
, eλ2

, eλ3
}.

For implementation purposes, to get the symmetric approx-
imation, one can think of discretizing the ball B(0, 1/4) by
changing into polar coordinates and looking at the rectangle
{(r, θ) : 0 ≤ r ≤ 1/4, 0 ≤ θ ≤ 2π}. One can then divide
each side of the rectangle into N subintervals partitioning it
into N2 rectangles. The exponential functions from the set
X are then evaluated at N2 grid-points, taking one point
from each small rectangle and thus obtaining a vector vi of
length N2 for each eλi

, i = 1, 2, 3. Looking at the synthesis
operator F of X as the matrix [F ] whose columns are vi;
such a matrix will be of size N2 by 3. After carrying out
the polar decomposition of [F ] using Matlab, one can get the
discretized Parseval frame {ui}3i=1 that will be considered as
the symmetric approximation of the above Fourier frame.
Suppose one is interested in reconstructing a function f in

span{eλ1
, eλ2

, eλ3
}. First f is converted into a vector [f ] of

size N2 by evaluating it at the N2 points on the rectangular
grid above. Then f is reconstructed at the N2 points as

˜[f ] =
3∑

j=1

〈[f ], ui〉ui.
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The results are shown in Figures 1 and 2 for the reconstruction
of f = eλ1

and f = eλ1
− 2eλ2

+ eλ3
, respectively. Only the

real part of the original and the reconstructed functions are
plotted. Also, for clarity of reading the figures, only a certain
number of points are plotted instead of all the N2 points.
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Fig. 1. Reconstruction of the function f = eλ1
using N = 50.
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Fig. 2. Reconstruction of the function f = eλ1
−2eλ2

+eλ3
using N = 50.

III. CONCLUSION
In this paper, the construction of a Parseval frame that is a

symmetric approximation of a Fourier frame on a spiral has
been considered. Presently, the focus is only on finite frames.
This is done by means of the polar decomposition of the matrix
corresponding to the synthesis operator of the Fourier frame.
The reconstruction of functions lying in the span of such
Fourier frames on spirals has been studied. By using a Parseval
frame that spans the same space as the original Fourier frame,
the reconstruction avoids the need to compute the inverse
of the frame operator of the original frame. Besides, the
Parseval frame that is obtained by considering the symmetric
approximation enables one to reconstruct a function by only
using the measurements obtained from the original Fourier
frame.

Finding a Parseval frame for some general separable Hilbert
space that is a symmetric approximation of a given frame
involves finding the polar decomposition of the synthesis oper-
ator. This constitutes ongoing research. For practical purposes,
even after finding a Parseval frame, it is not possible to use an
infinite frame and one should think of finding the best N -term
approximation. This will be a part of future research.

ACKNOWLEDGMENT
The authors are immensely grateful to John Benedetto for

being a constant source of inspiration and a mathematical role
model. The authors would also like to thank the anonymous
reviewers for their valuable comments and suggestions. The
first named author is supported by a postdoctoral fellowship
from the Pacific Institute for the Mathematical Sciences. The
second named author was partially supported by AFOSR Grant
No. FA9550-10-1-0441.

REFERENCES
[1] J. J. Benedetto, A. Powell, and H. C. Wu, “MRI signal resonstruction

by Fourier frames on interleaving spirals,” in Proceedings of IEEE
International Symposium on Biomedical Imaging, 2002, pp. 717 – 720.

[2] J. J. Benedetto and H. C. Wu, “A Beurling covering theorem and
multidimensional irregular sampling,” in SampTA, Loen, 1999.

[3] J. J. Benedetto and H. Wu, “A multidimensional irregular sampling
algorithm and applications,” in ICASSP, 1999.

[4] J. J. Benedetto and H. C. Wu, “Nonuniform sampling and spiral MRI
reconstruction,” in Proc. SPIE, Wavelet Applications in Signal and Image
Processing, vol. 4119, 2000, pp. 130–141.

[5] H. J. Landau, “Necessary density conditions for sampling and interpo-
lation of certain entire functions,” Acta Math. J., vol. 117, pp. 37–52,
1967.

[6] R. M. Redheffer and R. M. Young, “Completeness and basis properties
of complex exponentials,” Trans. Amer. Math. Soc., vol. 277, no. 1, pp.
93–111, 1983.

[7] A. Olevskii and A. Ulanovskii, “Universal sampling and interpolation
of band-limited signals,” Geom. Funct. Anal., vol. 18, no. 3, pp. 1029–
1052, 2008.

[8] ——, “Universal sampling of band-limited signals,” C. R. Math. Acad.
Sci. Paris, vol. 342, no. 12, pp. 927–931, 2006.

[9] G. Kozma and N. Lev, “Exponential Riesz bases, discrepancy of
irrational rotations and BMO,” J. Fourier Anal. Appl., vol. 17, no. 5,
pp. 879–898, 2011.

[10] H. G. Feichtinger and K. Grochenig, “Irregular sampling theorems and
series expansions of band-limited functions,” J. Math Anal. Appl., vol.
167, no. 2, pp. 530–556, 1992.

[11] B. Matei and Y. Meyer, “Simple quasicrystals are sets of stable sam-
pling,” Complex Var. Elliptic Equ., vol. 55, no. 8-10, pp. 947–964, 2010.

[12] M. Frank, V. I. Paulsen, and T. R. Tiballi, “Symmetric approximation
of frames and bases in Hilbert spaces,” Trans. Amer. Math.
Soc., vol. 354, no. 2, pp. 777–793, 2002. [Online]. Available:
http://dx.doi.org/10.1090/S0002-9947-01-02838-0

[13] O. Christensen, An Introduction to Frames and Riesz Bases. Birkhäuser,
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