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Abstract—We derive a theoretical framework for the re-
coverability of targets in the azimuth-range-Doppler domain
using random sensor arrays and tools developed in the area of
compressive sensing. In one manifestation of our theory we use
Kerdock codes as transmission waveforms and exploit some of
their peculiar properties in our analysis. Not only is our result the
first rigorous mathematical theory for the detection of moving
targets using random sensor arrays, but also the transmitted
waveforms satisfy a variety of properties that are very desirable
and important from a practical viewpoint.

I. INTRODUCTION

In recent years, radar systems employing multiple antennas
at the transmitter and the receiver (also referred to as MIMO
radar, where MIMO stands for multiple-input multiple-output)
have attracted enormous attention in the engineering and signal
processing community. Existing theory focuses mainly on the
detection of a single target. Only very recently, in the footsteps
of compressive sensing, do we see the emergence of a rigorous
mathematical theory for MIMO radar that addresses the more
realistic and more interesting case of multiple targets [13].
However, for the widely popular case of randomly spaced
antennas, the mathematical theory is still in its infancy.

On the other hand, mathematicians and engineers have
devoted substantial efforts to the design of radar transmission
waveforms that satisfy a variety of desirable properties. The
vast majority of this research has focused on single antenna
radar systems, and it is a priori not clear whether and how
these waveforms can be utilized for MIMO radar. In this paper
we bring together these two independent areas of research,
MIMO radar with random antenna arrays and radar waveform
design, by developing a rigorous mathematical framework for
accurate target detection via random arrays, which at the same
time utilizes some of the most attractive radar waveforms, such
as Kerdock codes.

In radar processing we are interested in a given area, which
is usually called the radar scene. We would like to detect the
location and the strength of the objects of interest, as well
as the velocity if there is relative motion between the radar
and the objects. Usually the radar scene is divided into a
grid of range-azimuth-Doppler (distance, direction and speed)
resolution cells. In many practical cases the radar scene is
sparse in the sense that only a small fraction of the grid points
is occupied by the targets of interest.

While the conventional radar processing techniques do not
take advantage of the fact that the radar scene is often sparse,

the recent development of compressive sensing (CS) provides
us the possibility to utilize this structure. In fact recent works
(such as [8], [12], [13] and the reference therein) created
important linkage between radar processing and CS. As in
CS, we also have to solve the following inverse problem in
radar processing:

y = Ax + w, (1)

where y is a vector of measurements collected by the receiver
antennas over an observation interval, A is a measurement
matrix whose columns correspond to the signal received from
a single unit-strength scatterer at a particular range-azimuth-
Doppler grid point, x is a vector whose elements represent the
complex amplitudes of the scatterers, and w is the unknown
noise vector. Note that this is an under-determined equation
(if dim(y) < dim(x)) and in general it has infinitely many
solutions. But given that x is sparse from our assumption, this
problem can have a satisfactory solution.

One of the algorithms that can be used to solve (1) is as
follows:

min
x

1

2
‖Ax− y‖22 + λ‖x‖1, (2)

which is also known as lasso. Here λ > 0 is a regularization
parameter that trades off goodness of fit with sparsity. [3]
showed that if we assume x is drawn from a generic S-sparse
target model (i.e. the support of x is selected uniformly at
random and the phases of the non-zero entries of x are random
and uniformly distributed in [0, 2π)) then with a particular
choice of λ, (2) will recover the support of x correctly with
high probability given that the coherence and the operator
norm of A can be well controlled.

Our paper provides two main contributions: (i) We de-
rive the first rigorous mathematical theory for the detection
of moving targets in the azimuth-range-Doppler domain for
random sensor arrays. (ii) The transmitted waveforms satisfy
a variety of properties that are very desirable and important
from a practical viewpoint. In particular, we show that Kerdock
sequences, which would perform very poorly in single-antenna
radar, are nearly ideally suited for MIMO radar with randomly
spaced antennas. Thus, our framework does not just lead to
useful theoretical insights, but also has a very strong practical
appeal.
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A. Connections with prior work and innovations

Random sensor arrays have been around for decades [11].
Recently, [4] made an explicit connection between random
sensor arrays and the CS. The setup in [4] is quite different
from ours, since the author is only concerned with angular
resolution, while it is often crucial in practice to be able to
estimate range and Doppler as well. Moreover, the theoretical
analysis in [4] follows more an engineering style and places
less emphasis on mathematical rigor.

On the other hand, [13] is closest to this paper. [13] consid-
ers a MIMO radar setting with a very specific (non-random)
choice for the antenna locations, but random waveforms,
while the current paper deals with randomly spaced antennas,
but very specific, deterministic waveforms. In practice, the
random waveforms are much harder to implement on a digital
device and they exhibit a larger peak-to-average-power ratio
compared to carefully designed deterministic waveforms. On
the other hand it makes no difference from the viewpoint of
physics or hardware, if we place the antennas at random or at
deterministic locations.

B. Notation

For a matrix A, we use A∗ to denote its adjoint matrix,
which is its conjugate transpose. The operator norm of A is
the largest singular value of A and is denoted by ‖A‖op.

For x ∈ Cn, let Tτ denote the circulant translation operator,
defined by Tτx(l) = x(l−τ), for τ = 1, . . . , n, where l−τ is
understood modulo n, and let Mf be the modulation operator
defined by Mfx(l) = x(l)e2πifl/n.

II. PROBLEM SETUP

We consider a MIMO radar employing NT antennas at
the transmitter and NR antennas at the receiver. We assume
for convenience that transmitter and receiver are co-located.
Furthermore, we assume a coherent propagation scenario, i.e.,
the element spacing is sufficiently small so that the radar return
from a given scatterer is fully correlated across the array. The
arrays and all the scatterers are assumed to be in the same 2-D
plane. The extension to the 3-D case is straightforward.

The array manifolds aT (β), aR(β) with randomly spaced
antennas are given by

aT (β) =
[
e2πip1β , e2πip2β , . . . , e2πipNT

β
]T
, (3)

and
aR(β) =

[
e2πiq1β , e2πiq2β , . . . , e2πiqNR

β
]T
, (4)

where we assume that the relative antenna spacings pj’s
and qj’s are i.i.d. uniformly on [0, NRNT

2 ]. The j-th transmit
antenna repeatedly transmits the signal sj(t) and the receive
antennas take Ns samples of the signal. Let Z(t;β, τ, f) be the
NR×Ns noise-free received signal matrix from a unit strength
target at direction β, delay τ , and Doppler f (corresponding
to its radial velocity with respect to the radar). Then

Z(t;β, τ, f) = aR(β)aTT (β)STτ,f ,

where Sτ,f is a Ns × NT matrix whose columns are the
circularly delayed and Doppler shifted signals sj(t−τ)e2πift.

We let z(t;β, τ, f) = vec{Z}(t;β, τ, f) be the noise-free
vectorized received signal. We set up a discrete azimuth-range-
Doppler grid {βl, τj , fk} for 1 ≤ l ≤ Nβ , 1 ≤ j ≤ Nτ and
1 ≤ k ≤ Nf , where ∆β ,∆τ and ∆f denote the corresponding
discretization stepsizes. Using vectors z(t;βl, τj , fk) for all
grid points (βl, τj , fk) we construct a complete response
matrix A whose columns are z(t;βl, τj , fk) for 1 ≤ l ≤ Nβ
and 1 ≤ j ≤ Nτ , 1 ≤ k ≤ Nf . In other words, A is a
NRNs ×NτNβNf matrix with columns

Aβ,τ,f = aR(β)⊗ Sτ,faT (β). (5)

Assume that the radar illuminates a scene consisting of
S scatterers located on S points of the (βl, τj , fk) grid.
Let x be a sparse vector whose non-zero elements are the
complex amplitudes of the scatterers in the scene. The zero
elements corresponds to grid points which are not occupied
by scatterers. We can then define the radar signal y received
from this scene by (1) where y is an NRNs × 1 vector, x
is an NτNβNf × 1 sparse vector and w is an NRNs × 1
complex Gaussian noise vector. Our goal is to solve for x,
i.e., to locate the scatterers (and their reflection coefficients)
in the azimuth-delay-Doppler domain.

As for the signal matrix S, for our main results we choose
the Kerdock waveforms, as described in Section III, as discrete
transmission waveforms.

Remark: The assumption that the targets lie on the grid points,
while common in compressive sensing, is certainly restrictive.
A violation of this assumption will result in a model mismatch,
sometimes dubbed gridding error, which can potentially be
quite severe [9], [5]. Recently some interesting strategies have
been proposed to overcome this gridding error [6], [15]. But
these methods are not directly applicable to our setting. This
model mismatch issue is beyond the scope of this paper and
will be addressed in our future research.

III. KERDOCK CODES

We briefly review the construction of Kerdock codes and
some of their fundamental properties. A simple way to con-
struct these Kerdock codes is the following, in which they arise
as eigenvectors of time-frequency shift operators. Let p be an
odd prime number and consider the translation operator T and
the modulation operator M on Cp. For each k = 0, . . . , p− 1
we compute the eigenvector decomposition of TMk (which
always exists, since TMk is a unitary matrix)

U(k)Σ(k)U
∗
(k) = TMk, (6)

where the unitary matrix U(k) contains the eigenvectors of
TMk and the diagonal matrix Σ(k) the associated eigenval-
ues1. Furthermore, we define U(p) := Ip. Now, let uk,j be
the j-th column of U(k). The set consisting of the p2 + p
vectors {uk,j , k = 0, . . . , p; j = 0, . . . , p − 1} forms a Zp-
Kerdock code. There are numerous equivalent ways to derive
this Kerdock code, but, as pointed out earlier, not all Kerdock
codes over Zp are equivalent (see also the comment following

1The attentive reader will have noticed that U(0) is just the p × p DFT
matrix.
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Corollary 11.6 in [2]). But we will be a bit sloppy, and simply
refer to the Kerdock code constructed above as the Kerdock
code.

In the following theorem we collect those key properties
of Kerdock codes that are most relevant for radar. These
properties are either explicitly proved in [2], [10] or can be
derived easily from properties stated in those papers.

Theorem 3.1: Kerdock codes over Zp, where p is an odd
prime, satisfy the following properties:

(i) Mutually unbiased bases: For all k = 0, . . . , p and all
j = 0, . . . , p− 1, there holds:

|〈uk,j , uk′,j′〉| =


1 if k = k′, j = j′,
0 if k = k′, j 6= j′,
1√
p if k 6= k′.

(ii) Time-frequency “autocorrelation”:
(a) For any fixed (f, l) 6= (0, 0) there exists a unique k0
such that

|〈MfTluk0,j , uk0,j〉| = 1 for j = 0, . . . , p− 1, (7)
|〈MfTluk,j , uk,j〉| = 0 for k 6= k0. (8)

(b) For any fixed 0 ≤ k ≤ p − 1, there exist distinct
(fr, lr), r = 1, . . . , p such that

|〈MfrTlruk,j , uk,j〉| = 1 for j = 0, . . . , p− 1, (9)

(iii) Time-frequency crosscorrelation: For all k 6= k′ and all
f and l there holds:

|〈MfTluk,j , uk′,j〉| ≤
1
√
p

for j = 0, . . . , p− 1.

(10)

We emphasize though that Kerdock codes would not be
very effective for a radar system with a single transmit
antenna (SISO or SIMO radar). This can be easily seen as
follows: Suppose we only have one antenna that transmits
one waveform ~s. Because of (9), ~s is equal to (up to a phase
factor) MfTl~s for some f, l. In practice, this prevents us from
determining the distance and the speed of the object.

As a consequence of the aforementioned ambiguity we will
not use all of the Kerdock codes as transmission signals for
our MIMO radar, instead we will choose one code for each
index k. The reason is that we need the waveforms to have low
time-frequency crosscorrelation, while (10) only holds when
k and k′ are different.

Definition 3.2 (Kerdock waveforms): Let {uk,j , k =
0, . . . , p, j = 0, . . . , p − 1} be a Kerdock code over Zp.
The Kerdock waveforms k0, . . . ,kr, where r < p, are given
by kk = uk,j for some arbitrary j. In other words, for
each k = 0, . . . , r − 1 we pick an arbitrary vector from the
orthonormal basis {uk,j}p−1j=0 .
Note Kerdock waveforms do not include any canonical vec-
tors, since only the first r unitary matrices U(0), . . . ,U(r−1)
are considered and r is strictly less than p (recall U(p) = Ip).

IV. THE MAIN THEOREM

As mentioned in the introduction, a standard approach to
solve (1) when x is sparse, is given in (2). But instead of (2),
we will use the debiased lasso. That means first we compute
an approximation Ĩ for the support of x by solving (2). This is
the detection step. Then, in the estimation step, we “debias”
the solution by computing the amplitudes of x via solving
the reduced-size least squares problem min ‖AĨxĨ − y‖2,
where AĨ is the submatrix of A consisting of the columns
corresponding to the index set Ĩ , and similarly for xĨ .

We assume x is drawn from a generic S-sparse target model.
We are now ready to state our main result (more details of this
theorem can be found in [14]).

Theorem 4.1: Consider y = Ax + w, where A is defined
as in (5) and wj ∈ CN(0, σ2). Assume that the positions of
the transmit and receive antennas pj’s and qj’s are chosen
i.i.d. uniformly on [0, NRNT

2 ] at random. Suppose further that
each transmit antenna sends a different Kerdock waveform,
i.e. the columns of the signal matrix S are different Kerdock
waveforms. Suppose that

max
(
NRNT , 32N3

T logNτNfNβ
)
≤ Ns = Nτ , (11)

and also
log2NτNfNβ ≤ NT ≤ NR. (12)

If x is drawn from the generic S-sparse scatterer model with

S ≤ c0Nτ
logNτNfNβ

(13)

for some constant c0 > 0, and if

min
k∈I
|xk| >

8
√

3σ√
NRNT

√
2 logNτNfNβ , (14)

then the solution x̃ of the debiased lasso computed with λ =
2σ
√

2 logNτNfNβ satisfies with high probability

supp(x̃) = supp(x), (15)

and
‖x̃− x‖2
‖x‖2

≤ 5σ
√

3NRNs
‖y‖2

. (16)

Remarks:
1) The condition NT ≤ NR in (12) is by no means

necessary, but rather to make our computation a little
cleaner. We could change it into NT ≤ 2NR, then
the theorem would be true with a slightly different
probability of success.

2) It may seem that the conditions in (11) and (12) are a
bit restrictive. But, in practice, our method works with
a broad range of parameters.

The proof of the above theorem is rather involved and too
long to be included in this brief paper. The full proof of
this theorem, as well as other results presented in this paper
can be found in the journal version of this paper [14]. Here,
we can only sketch the key steps. To prove Theorem 4.1,
we use a theorem by Candès and Plan (Theorem 1.3 in [3])
which requires to estimate the operator norm of A and the
coherence of A. The original theorem only treats the real-
valued case, it can be extended to complex-valued case after
some straightforward modifications (see Appendix B in [13]).
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V. EXTENSION OF THE MAIN RESULT

In this section, we present a modified version of Theo-
rem 4.1 that applies to waveforms that satisfy slightly more
restrictive incoherence conditions. As such, Theorem 5.1 be-
low does not hold for Kerdock waveforms, but the advantage
compared to Theorem 4.1 is that the result also applies to radar
systems with only one transmit antenna.

Theorem 5.1: Consider y = Ax + w, where A is defined
as in (5) and wj ∈ CN(0, σ2). Suppose the transmission
waveforms satisfy the following conditions

|〈~sj ,MfTτ~sj〉| ≤
γ
√
p

for (f, τ) 6= (0, 0), (17)

|〈~sk,MfTτ~sj〉| ≤
γ
√
p

for k 6= j, (18)

where γ > 0 is a fixed constant. Assume that the positions
of the transmit and receive antennas pj’s and qj’s are chosen
i.i.d. uniformly on [0, NRNT

2 ]. Choose the same discretization
stepsizes to be ∆β = 2

NRNT
,∆τ = 1

2B , ∆f = 1
T and suppose

that

max
(
γ2NRNT , 16γ2NT log3NτNfNβ

)
≤ Ns = Nτ

and also

γ2NT log4NτNfNβ ≤ NsNR, log2NτNfNβ ≤ NT ≤ NR.

Then if the rest of the conditions of Theorem 4.1 hold, we
have the same conclusion as in Theorem 4.1.

There are several examples of signal sets that satisfy the
above conditions. Perhaps the most intriguing example is
the finite harmonic oscillator system (FHOS) constructed in
[7]. This signal set in Cp (where p is a prime number) of
cardinality O(p3) satisfies (17) and (18) with γ = 4. An
elementary construction of the FHOS for prime number p ≥ 5
can be found in [16].

VI. SIMULATIONS

In this section we will demonstrate the performance of
our algorithms via numerical simulations. We use the Matlab
Toolbox TFOCS ([1]).

We choose Kerdock codes as transmission waveforms along
with the parameters: NT = 6, NR = 6, Ns = 37, Nf = 37.
The number of the scatters S = 10, 20, 40 while the SNR is
chosen to be 20dB.

The values of the estimated vector x̂ corresponding to
the true scatterer locations are compared to a threshold.
Detection is declared whenever a value exceeds the threshold.
The probability of detection Pd is defined as the number of
detections divided by S. Next the values of the estimated
vector x̂ corresponding to locations not containing scatterers
are compared to the same threshold. A false alarm is declared
whenever one of these values exceeds the threshold. The
probability of false alarm Pfa is defined as the number
of false alarms divided by n − S, where n is the signal
dimension. The results are averaged over the 50 repetitions
of the experiment. The probabilities are computed for a range
of values of the threshold to produce the so-called Receiver
Operating Characteristics (ROC)- the graph of Pd vs. Pfa.
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