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Abstract—Ewald summation has established as basic element
of fast algorithms evaluating the Coulomb interaction energy of
charged particle systems in three dimensions subject to periodic
boundary conditions. In this context particle mesh routines, as the
P3M method, and the P2NFFT, which is based on nonequispaced
fast Fourier transforms (NFFT), should be mentioned. These
methods treat the problem efficiently in case that periodic
boundary conditions in all three dimensions are assumed. In this
paper we present a new approach for the efficient calculation
of the Coulomb interaction energy subject to mixed boundary
conditions based on NFFTs.

I. INTRODUCTION

Let a set of N charges qj ∈ R at positions xj ∈ R3,
j = 1, . . . , N , be given. Throughout this paper we assume
that the system is electrical neutral, i.e.,

∑N
j=1 qj = 0. The

electrostatic energy of the particle system is basically a sum
of the form

E(S) :=
1

2

N∑
i,j=1

∑
n∈S

′ qiqj
‖xi − xj +Bn‖

, (1)

where S ⊆ Z3 is set according to the given boundary
conditions and B ∈ R is the edge length of the periodically
duplicated simulation box. The prime on the second sum
indicates that in the case n = 0 the terms for i = j are
omitted.

If periodic boundary conditions are applied in all three
dimensions, the particle positions xj are commonly assumed
to be distributed in a cubic box, i.e., xj ∈ BT3 for some
B > 0, and S := Z3. We thereby define the torus T := R/Z '
[−1/2, 1/2). In some applications periodic boundary conditions
are assumed in two or one dimension only, where we choose
S := Z2 × {0} with xj ∈ BT2 × R and S := Z× {0}2 with
xj ∈ BT× R2, respectively.

It is important to note that in all three cases the infinite
sum (1) is only conditionally convergent, i.e., the value of the
energy is not well defined unless a precise order of summation
is specified.

The well known Ewald summation formulas, which have at
first been derived for the fully periodic case, cf. [1], are the
principle behind many fast algorithms evaluating the energy
(1). The Ewald method is based on the trivial identity

1

r
=

erf(αr)

r
+

erfc(αr)

r
, (2)

where α > 0, erf(x) := 2√
π

∫ x
0

e−t
2

dt is the well known error
function and erfc(x) := 1−erf(x) is the complementary error
function. If (2) is applied to (1), the poorly converging sum is
split into two exponentially converging parts. The first infinite
sum, including the erfc-terms, is short ranged and absolutely
convergent in spatial domain. Taking a specific summation
order into account and exploiting the charge neutrality, the
second sum, which is still long ranged, can be transformed
into a rapidly converging sum in frequency domain. Usually,
the energy (1) is defined over a spherical order of summation,
see [4] for a detailed derivation for the fully periodic case. The
Ewald summation formulas for 2d- and 1d-periodic boundary
conditions are derived in [2] and [3], respectively.

In the fully periodic case, the Ewald method has the
complexity O(N

3/2) if the splitting parameter α is chosen ap-
propriately. However, the computational effort can be reduced
to O(N logN) arithmetic operations by evaluating the long
range part efficiently using Fast Fourier transforms (FFT). For
this purpose, the problem has to be modified in a way that the
FFT as a grid transformation can be used. This discretization is
performed by replacing the charges qj by a grid based charge
density. This is the basic idea behind Particle Mesh approaches
such as the P3M method, see [5] to get an overview over
some of these techniques. The same principle is used in the
P2NFFT method [6], which is based on nonequispaced fast
Fourier transforms (NFFT). Here the discretization process is
part of the NFFT algorithms.

For open boundary conditions, i.e., S := {0}3 in (1),
fast summation methods [8], [9] based on NFFTs where
suggested, too. In this note we aim to close the gap and
propose FFT based algorithms also for 2d- and 1d-periodic
boundary conditions.

We remark that the fast multipole method can also handle
all boundary conditions very efficiently, see [10].

The outline of this paper is as follows. We start with a
short introduction to the NFFT. Thereafter we consecutively
consider the problem of evaluating (1) subject to 2d- and 1d-
periodic boundary conditions. In each case we consider at
first the according Ewald summation formula and then present
a new approach for the efficient calculation of the Coulomb
interaction energy (1) based on NFFTs.

To keep the notation short we define the difference vectors
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xij := xi − xj . For some M ∈ 2Nd we refer to IM as the
index set given by

IM :=
{[
−M1

2 ,
M1

2

)
× · · · ×

[
−Md

2 , Md

2

)}
∩ Zd.

Throughout this paper we do not distinguish between row and
column vectors and denote by x · y := x1y1 + . . .+ xdyd the
scalar product and by x � y := (x1y1, . . . , xdyd) ∈ Rd the
component wise product of two vectors x,y ∈ Rd. For some
x ∈ Rd with non-vanishing components we further define the
vector x−1 ∈ Rd by x−1 := (x−11 , . . . , x−1d ).

II. NONEQUISPACED FAST FOURIER TRANSFORMS

Let M ∈ 2Nd, the index set IM and the coefficients f̂k ∈ C
for k ∈ IM be given. The fast evaluation of a trigonometric
polynomial

f(x) :=
∑

k∈IM

f̂ke−2πik·x

at N ∈ N given nodes xj ∈ Td, i.e., the fast computation of
fj := f(xj), j = 1, . . . , N , is known as d-dimensional NFFT.
The algorithm uses an approximation of f in the form

f(x) ≈
∑
l∈Im

glϕ̃(x− l�m−1), (3)

where ϕ̃ is a multivariate 1-periodic function, which is well
localized in spatial and frequency domain, and m ∈ 2Nd
with m > M (component wise). It can be shown that it is
reasonable to set, cf. [7],

gl :=
1

|Im|
∑

k∈IM

f̂k
ck(ϕ̃)

e2πik·(l�m−1),

where ck(ϕ̃) denotes the Fourier coefficient with index k of
ϕ̃. Obviously, the coefficients gl ∈ C can be calculated using
the FFT. The function values f(xj) are then computed via (3),
where the sums can be truncated due to the good localization
of ϕ̃ in spatial domain.

Correspondingly, the adjoint NFFT is an algorithm for the
efficient calculation of

ĥk :=

N∑
j=1

fje
2πik·xj , k ∈ IM ,

for N given nodes xj ∈ Td and coefficients fj ∈ C, j =
1, . . . . , N . The resulting algorithm has a very similar structure
and the same arithmetic complexity of O(|IM | log |IM |+N),
see [7] for instance. In this reference different choices for the
window function ϕ̃ are discussed, too.

III. 2D-PERIODIC SYSTEMS

For N charges qj at positions xj = (xj,1, xj,2, xj,3) ∈
BT2 × R, j = 1, . . . , N , we define the electrostatic energy
subject to periodic boundary conditions in the first two di-
mensions by Ep2 := E(Z2 × {0}).

At first we review the corresponding Ewald formula, as
derived in [2], and then present an NFFT approach for the
fast calculation of the energy Ep2. In this section we refer to
x̃ := (x1, x2) ∈ BT2 as the vector of the first two components
of some x ∈ BT2 × R.

A. Ewald Formula
If a spherical order of summation is applied, the electrostatic

energy Ep2 can be written in the form, cf. [2],

Ep2 = Ep2,S + Ep2,L + Ep2,0 + Ep2,self , (4)

where for some α > 0

Ep2,S :=
1

2

∑
n∈Z2×{0}

N∑
i,j=1

′qiqj
erfc(α‖xij +Bn‖)
‖xij +Bn‖

Ep2,L :=
1

4B

∑
k∈Z2\{0}

N∑
i,j=1

qiqj e2πik·x̃ij/BΘp2(‖k‖, xij,3)

Ep2,0 := −
√
π

B2

N∑
i,j=1

qiqjΘ
p2
0 (xij,3)

Ep2,self := − α√
π

N∑
j=1

q2j .

We thereby define the functions Θp2
0 and Θp2 by

Θp2
0 (r) :=

e−α
2r2

α
+
√
πr erf(αr)

and
Θp2(k, r) :=

Ψ(k, r) + Ψ(k,−r)
k

,

where we set

Ψ(k, r) := e2πkr/Berfc
(
πk
αB + αr

)
.

We immediately see that Θp2
0 ∈ C∞(R) as well as Θp2(k, ·) ∈

C∞(R) for each k 6= 0.

Lemma 1. For arbitrary r ∈ R we have Θp2(k, r)→ 0 with
Θp2(k, r) ∼ k−2e−k

2

for k →∞.

Proof: The function Θp2 has the integral representation

Θp2(k, r) =
4
√
π

B

∫ α

0

1

t2
exp

(
−π

2k2

B2t2
− r2t2

)
dt,

cf. [11, number 7.4.33]. We now easily see

Θp2(k, r) ≤ Θp2(k, 0) =
2

k
erfc

(
πk

αB

)
≈ 2αB

k2π3/2
e−

π2k2

α2B2 ,

which is valid for large k, cf. [11, number 7.1.23].

B. An NFFT approach
The infinite sum in Ep2,S is short ranged and can be

computed by direct evaluation. Due to Lemma 1 the infinite
sum in Ep2,L can be truncated, i.e., we can replace Z2 by IM
for some appropriate M ∈ 2N2.

In the following we choose h > 0 and ε > 0 such that
|xij,3| ≤ h(1/2−ε) for all i, j = 1, . . . , N . In order to compute
the far field Ep2,L + Ep2,0 efficiently we employ the idea of
NFFT based fast summation methods [8] and consider the
regularization

KR(k, r) :=


1
4BΘp2(k, r) : k 6= 0, |h−1r| ≤ 1/2− ε
−
√
π

B2 Θp2
0 (r) : k = 0, |h−1r| ≤ 1/2− ε

KB(k, r) : |h−1r| ∈ (1/2− ε, 1/2]
,
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where for each k ∈ {‖k‖ : k ∈ IM} the function KB(k, ·) is
defined such that KR(k, ·) is in the space Cp(hT) for some
p ∈ N large enough, i.e., KB(k, ·) fulfills the conditions

K
(n)
B (k, h/2− hε) = K

(n)
R (k, h/2− hε)

K
(n)
B (k,−h/2 + hε) = K

(n)
R (k,−h/2 + hε)

= (−1)nK
(n)
R (k, h/2− hε)

for all n = 0, . . . , p and is chosen such that

K
(n)
R (k, h/2) = K

(n)
R (k,−h/2) ∀n = 0, . . . , p

is satisfied, too. The order p can be chosen arbitrarily large
as the functions Θp2

0 and Θp2(k, ·) are differentiable for all
degrees of differentiation. The resulting functions KR(k, ·)
then are h-periodic and smooth. Thus we can find good
approximations of the form

KR(k, r) ≈
∑
l∈IM3

bk,le
2πilr/h

with M3 ∈ 2N large enough and the Fourier coefficients

bk,l :=
1

M3

∑
j∈IM3

KR

(
k, jhM3

)
e−2πijl/M3 .

With M∗ := (M ,M3) ∈ 2N3 we obtain

Ep2,L + Ep2,0 ≈
∑

k∈IM

∑
l∈IM3

b‖k‖,l

N∑
i,j=1

qiqje
2πivk,l·xij

=
∑

(k,l)∈IM∗

b‖k‖,l|S(k, l)|2, (5)

where we define

vk,l :=

(
k/B
l/h

)
as well as S(k, l) :=

N∑
j=1

qje
2πivk,l·xj .

Obviously, the sums S(k, l), (k, l) ∈ IM∗ , can efficiently be
computed by a trivariate adjoint NFFT.

Remark 1. The energy Ep2 can also be written in the form
Ep2 = 1

2

∑N
j=1 qjφ

p2(xj), where for each xj the potential
φp2(xj) is defined by

φp2(xj) :=
∑

n∈Z2×{0}

N∑
i=1

′ qi
‖xij +Bn‖

.

The term qjφ
p2(xj) then represents the energy of the single

particle j. It is easy to see that we can write

φp2(xj) = φp2,S(xj) +φp2,L(xj) +φp2,0(xj) +φp2,self(xj),

according to (4). By (5) we find that the long range part
φp2,L(xj) + φp2,0(xj) can be approximated by

2
∑

(k,l)∈IM∗

b‖k‖,lS(k, l)e−2πivk,l·xj .

Having calculated the sums S(k, l) the long range parts of
the potentials φp2(xj), j = 1, . . . , N , can be computed by a
trivariate NFFT. Note that computing this additional NFFT is
not necessary if only the total energy Ep2 is of interest.

IV. 1D-PERIODIC SYSTEMS

For N charges qj at positions xj ∈ BT×R2, j = 1, . . . , N ,
we denote by Ep1 := E(Z×{0}2) the electrostatic energy (1)
subject to periodic boundary conditions in the first dimension.

In this section we refer to x̃ := (x2, x3) ∈ R2 as the vector
of the last two components of some x ∈ BT×R2. Furthermore
we define by

Γ(s, x) :=

∫ ∞
x

ts−1e−tdt

the upper incomplete gamma function and by γ the Euler
constant.

A. Ewald formula

The Ewald summation formula for the electrostatic energy
Ep1 reads as, cf. [3],

Ep1 = Ep1,S + Ep1,L + Ep1,0 + Ep1,self ,

where

Ep1,S :=
1

2

∑
n∈Z×{0}2

N∑
i,j=1

′qiqj
erfc(α‖xij +Bn‖)
‖xij +Bn‖

Ep1,L :=
1

B

∑
k∈Z\{0}

N∑
i,j=1

qiqje
2πikxij,1/BΘp1(k, ‖x̃ij‖)

Ep1,0 := − 1

2B

N∑
i,j=1
x̃ij 6=0

qiqjΘ
p1
0 (‖x̃ij‖)

Ep1,self := − α√
π

N∑
j=1

q2j

for some α > 0. Thereby the functions Θp1 and Θp1
0 are

defined by

Θp1(k, r) :=

∫ α

0

1

t
exp

(
−π

2k2

B2t2
− r2t2

)
dt

and
Θp1

0 (r) := γ + Γ(0, α2r2) + ln(α2r2).

It can easily be seen that Θp1(k, ·) ∈ C∞(R) for any k.

Lemma 2. For arbitrary r ∈ R we have Θp1(k, r)→ 0 with
Θp1(k, r) ∼ k−2e−k

2

for k →∞.

Proof: We immediately see

Θp1(k, r) ≤ Θp1(k, 0) =
1

2
Γ

(
0,
π2k2

α2B2

)
.

The claim follows by applying the asymptotic expansion

Γ(0, x) ≈ e−x

x
,

cf. [11, number 6.5.32], which holds for large x.

Lemma 3. For the univariate function

ϑ(x) :=

{
0 : x = 0

γ + Γ(0, x2) + ln(x2) : else
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we have ϑ ∈ C∞(R).

Proof: From the identity, cf. [11, number 5.1.11],

γ + Γ(0, t) + ln(t) =

∞∑
k=1

(−1)k+1tk

k!k
, (6)

which is fulfilled for all positive t, it can be seen that
limt→0 Γ(0, t) + ln t + γ = 0. Thus, the function ϑ is
continuous. Since (6) holds for t > 0 we obtain

γ + Γ(0, x2) + ln(x2) =

∞∑
k=1

(−1)k+1x2k

k!k

for all x 6= 0 and conclude

lim
x→+0

dn

dxn
(
Γ(0, x2) + ln(x2)

)
= lim
x→−0

dn

dxn
(
Γ(0, x2) + ln(x2)

)
6= ±∞

for all n ∈ N.

B. An NFFT approach

Due to Lemma 2 the infinite sum in Ep1,L can be truncated,
i.e., we can replace Z by IM0

for some appropriate M0 ∈ 2N.
In the following we choose h > 0 and ε > 0 such that

‖x̃ij‖ ≤ h(1/2 − ε) for all i, j = 1, . . . , N . In order to
compute the far field Ep1,L + Ep1,0 efficiently we define the
regularization KR by

KR(k, r) :=


1
BΘp1(k, r) : k 6= 0, |h−1r| ≤ 1/2− ε
− 1

2BΘp1
0 (r) : k = 0, |h−1r| ≤ 1/2− ε

KB(k, r) : |h−1r| ∈ (1/2− ε, 1/2]
,

where for each k ∈ N0 ∩IM0
the function KB(k, ·) is chosen

such that the bivariate function KR(k, ‖ · ‖) : hT2 → R is in
the space Cp(hT2) for p ∈ N sufficiently large, i.e., KB(k, ·)
fulfills the conditions

K
(n)
B (k, h/2− hε) = K

(n)
R (k, h/2− hε)

K
(n)
B (k,−h/2 + hε) = (−1)nK

(n)
R (k, h/2− hε)

for all n = 0, . . . , p and is chosen such that

KR(k, h/2) = KR(k,−h/2)
K

(n)
R (k, h/2) = K

(n)
R (k,−h/2) = 0, n = 1, . . . , p.

We further set KR(k, ‖y‖) := KR(k, h/2) for all y ∈ hT2

with ‖y‖ > h/2.
The smooth and periodic functions KR(k, ‖ · ‖) can then

be approximated by a bivariate trigonometric polynomial. To
this end, we set r := ‖y‖, y ∈ hT2, and obtain for each
k ∈ N ∩ IM0

with an appropriate M ∈ 2N2

KR(k, ‖y‖) ≈
∑
l∈IM

bk,le
2πil·y/h

with the Fourier coefficients

bk,l :=
1

|IM |
∑

j∈IM

KR

(
k, ‖j �M−1‖h

)
e−2πij·(l�M−1).

With M∗ := (M0,M) ∈ 2N3 we obtain, analogously to (5),

Ep1,L + Ep1,0 ≈
∑

(k,l)∈IM∗

b|k|,l

N∑
i,j=1

qiqje
2πivk,l·xij

=
∑

(k,l)∈IM∗

b|k|,l|S(k, l)|2,

where we set

S(k, l) :=

N∑
j=1

qje
2πivk,l·xj with vk,l :=

(
k/B
l/h

)
.

The sums S(k, l), (k, l) ∈ IM∗ , can efficiently be evaluated
by a trivariate adjoint NFFT. For the 1d-periodic case a similar
statement to that in Remark 1 can be given.

V. CONCLUSION

In this paper we proposed a new approach for the efficient
calculation of the Coulomb interaction energy under 2d- and
1d- periodic boundary conditions. The presented methods are
based on the corresponding Ewald summation formulas and
nonequispaced fast Fourier transforms, where the ansatz is
very much related to those of NFFT based fast summation
methods. Numerical results of these algorithms will be re-
ported in a further paper, where we aim to set the main focus
on the derivation of error estimates as well as concluding
statements about the optimal choice of the cutoff parameters
and the regularization variables h, ε and p.
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