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Abstract—We describe the application of Prony-like
reconstruction methods to the problem of the sparse
Fast Fourier transform (sFFT) [6]. In particular, we
adapt both important parts of the sFFT, quasi ran-
dom sampling and filtering techniques, to Prony-like
methods.
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I. Introduction
Computing the discrete Fourier transform of a vector of

size N requires O(N logN) arithmetical operations. The
problem of a sparse Fourier transform (sFFT) now reads
as follows: For a vector x = (xl)N−1

l=0 ∈ CN , assume that
its Fourier representation

xl = 1
N

N−1∑
j=0

x̂j e2πilj/N , l = 0, . . . , N − 1,

has only K � N non-vanishing Fourier coefficients x̂jk ∈
C, jk ∈ {0, . . . , N − 1}, k = 1, . . . ,K. Now given part
of the vector of samples x ∈ CN , determine the non-
vanishing Fourier coefficients x̂jk ∈ C and their support
jk ∈ {0, . . . , N − 1}, k = 1, . . . ,K.

This problem has recently attracted much attention in
the field of compressed sensing [2], [4], where one generally
aims to reconstruct a vector with few non-vanishing coef-
ficients from a relatively small number of linear measure-
ments. Besides measurement matrices with independent
random entries, structured matrices generated by a smaller
number of random variables have been studied over the
last years. Here, the most prominent example is given
by a random selection of K rows of the N -th Fourier
matrix, see e.g. [15], [11]. For this particular setting, the
class of sublinear-time Fourier algorithms [5], [10] with a
runtime that is polynomial in logN and K received much
attention. The key idea, as outlined recently in [8], [6], [7]
is the use of quasi random sampling and a band pass filter.
Recently, these methods have been generalised for off-grid
frequencies as well [1].

On the other hand, Prony-like methods are known for
a long time in parameter estimation, in particular for

exponential sums, see e.g. [13], [14] and references therein.
In this note, we combine Prony-like methods with the
above quasi random sampling and band pass filtering
techniques.

II. Prony method
Let K ≥ 1 be an integer, fk ∈ (−∞, 0] + i [−π, π), k =

1, . . . ,K, be distinct complex numbers and ck ∈ C \ {0},
k = 1, . . . ,K. We assume that |ck| > ε for a convenient
bound 0 < ε � 1 and consider the exponential sum of
order K,

h(x) :=
K∑
k=1

ck efkx, x ≥ 0, (II.1)

where the nodes zk := efk , k = 1, . . . ,K are distinct values
in the unit disk D := {z ∈ C : 0 < |z| ≤ 1} without zero.
The well known Prony method recovers all parameters of
the exponential sum (II.1), if sampled data

h(m) =
K∑
k=1

ck efkm =
K∑
k=1

ck z
m
k ∈ C, m = 0, . . . ,M − 1,

(II.2)
with M ≥ 2K are given. This problem is known as
frequency analysis problem, which is important within
many disciplines in sciences and engineering, see [13]. For
a survey of the most successful methods for the data fitting
problem with linear combinations of complex exponentials,
we refer to [12]. We follow the lines in [14] and consider the
case of an unknown order K for the exponential sum (II.1)
and given noiseless sampled data h(m), m = 0, . . . ,M −1.
Let K0 ∈ N be a convenient upper bound of K, i.e.
K ≤ K0 ≤ M/2. With the M sampled data h(m) ∈ C,
m = 0, . . . ,M − 1, we form the rectangular Hankel matrix

HM−K0,K0+1 :=
(
h(m+ k)

)M−K0−1,K0

m,k=0 (II.3)

and compute the singular value decomposition (SVD)

HM−K0,K0+1 = UM−K0DM−K0,K0+1WK0+1 , (II.4)

where UM−K0 and WK0+1 are unitary matrices and
where DM−K0,K0+1 is a rectangular diagonal matrix.
The diagonal entries of DM−K0,K0+1 are the singular
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values of HM−K0,K0+1 arranged in nonincreasing order
σ1 ≥ σ2 ≥ . . . ≥ σK > σK+1 = . . . = σK0+1 = 0.
Thus we can determine the rank K of the Hankel matrix
(II.3) which coincides with the order of the exponential
sum (II.1). Introducing the matrices

DM−K0,K := DM−K0,K0+1(1 : M −K0, 1 : K)

=
(

diag (σk)Kk=1
OM−K0−K,K

)
,

WK,K0+1 := WK0+1(1 : K, 1 : K0 + 1) ,

we can simplify the SVD of the Hankel matrix (II.3) as
HM−K0,K0+1 = UM−K0DM−K0,KWK,K0+1 . Setting

WK,K0(s) =WK,K0+1(1 : K, 1 + s : K0 + s) , s = 0, 1,
(II.5)

we determine the nodes zk ∈ D, k = 1, . . . ,K, as
eigenvalues of the matrix

F SVD
K :=

(
WK,K0(0)T)†WK,K0(1)T , (II.6)

where † denotes the Moore-Penrose-Inverse. Thus the
ESPRIT [16] algorithm reads as follows:

Algorithm II.1 (ESPRIT method)
Input: K0, M ∈ N (M � 2, 3 ≤ K0 ≤ M/2, K0 is

upper bound of the order K of (II.1)), h(m) ∈ C, m =
0, . . . ,M − 1, 0 < ε� 1.

1. Compute the SVD of the rectangular Hankel matrix
(II.4). Determine the rank K of HM−K0,K0+1 such that
σK+1 < εσ1 and form the matrices (II.5).
2. Compute all eigenvalues zk ∈ D, k = 1, . . . ,K, of the

square matrix F SVD
K . Set fk := log zk, k = 1, . . . ,K.

3. Compute the coefficients ck ∈ C, k = 1, . . . ,K,
as least squares solution of the overdetermined linear
Vandermonde–type system

(zmk )M−1,K
m=0,k=1 c =

(
h(m)

)M−1
m=0 (II.7)

with z := (zk)Kk=1 and c := (ck)Kk=1

Output: K ∈ N, fk ∈ (−∞, 0] + i [−π, π), ck ∈ C, k =
1, . . . ,K.

Remark II.2 For noiseless sampled data, the authors in
[14] describe the close connections between the classical
Prony method, the matrix pencil method based on a QR
decomposition, and the ESPRIT method.

III. Random sampling and integer frequencies
We consider the sparse Fourier approximation problem.

For a vector x ∈ CN , we assume that its Fourier represen-
tation

xl = 1
N

N−1∑
j=0

x̂j e2πilj/N , l = 0, . . . , N − 1,

has only K � N non-vanishing Fourier coefficients
x̂jk , jk ∈ {0, . . . , N − 1}, k = 1, . . . ,K. That is,

xl = 1
N

K∑
k=1

x̂jk e2πiljk/N =
K∑
k=1

ck ef̃kl, l = 0, . . . , N − 1,

with ck = 1
N x̂jk ∈ C\{0} and f̃k = 2πijk/N ∈ C satisfying

Re f̃k = 0 and Im f̃k ∈ [0, 2π), k = 1, . . . ,K. Applying e.g.
the ESPRIT method to the first M entries x0, . . . , xM−1
of x would yield coefficients ck ∈ C\{0} and frequencies
fk ∈ C with Re fk = 0 and Im fk ∈ [−π, π), k = 1, . . . ,K.
By

f̃k =
{
fk, Im fk ≥ 0,
fk + 2πi, Im fk < 0,

and

jk = round(N2π Im f̃k),

x̂jk = Nck,

k = 1, . . . ,K, we could accomplish the computation of the
K-sparse Fourier transform x̂ ∈ CN that way.

However, we do not intend to take necessarily the first
M entries x0, . . . , xM−1 as input for the Prony-like method
but (to a certain extent) random M entries of the vector
x. We use a random parameter σ ∈ {1, . . . , N − 1}
being invertible modulo N and a random shift parameter
τ ∈ {0, . . . , N − 1} similarly as used in [8]. The following
theorem confirms the possibility to connect randomized
signal samples and a Prony-like algorithm for computation
as suggested in [17].

Theorem III.1 Let the vector x = (xl)N−1
l=0 ∈ CN with a

K-sparse Fourier representation

xl = 1
N

K∑
k=1

x̂jk e2πiljk/N , l = 0, . . . , N − 1, (III.1)

and two integers σ, τ ∈ {0, . . . , N − 1}, σ being invertible
modulo N , be given. Then we have

xσl+τ =
K∑
k=1

ck ef̃kl, l = 0, . . . , N − 1,

with coefficients

ck = 1
N
x̂jkω

jkτ
N ∈ C\{0}

and frequencies

f̃k = i2π
N

((jkσ) modN) ∈ C

such that Re f̃k = 0 and Im f̃k ∈ [0, 2π), k = 1, . . . ,K.
Here, ωN = e2πi/N denotes the principal N -th primitive
root of unity.

A simple consequence is the following: Let two integers
σ, τ ∈ {0, . . . , N − 1}, σ invertible modulo N , and a
sufficiently big number of samples M ≥ 2K be given.

Proceedings of the 10th International Conference on Sampling Theory and Applications

573



One can determine the K non-zero Fourier coefficients
x̂jk ∈ C and integer frequencies jk ∈ {0, . . . , N − 1} of
the vector x ∈ CN with entries (III.1) using the samples
xσl+τ , l = 0, . . . ,M − 1, by

jk = (round(N2π Im fk)σ−1) modN, k = 1, . . . ,K,

and
x̂jk = Nckω

−jkτ
N , k = 1, . . . ,K,

where σ−1 denotes the inverse of σ modulo N and
ck, fk, k = 1, . . . ,K, the output of a Prony-like recon-
struction method. Hence, the Prony-like methods are well-
suited for the computation of sparse Fourier transforms.
After applying the Algorithm II.1 to the permuted signal
samples, we obtain the integer frequencies by rounding.
Further, we need to invert the random separation and
take the modulo of the result in order to guarantee that
jk ∈ {0, . . . , N − 1}. The random shift in the sampling
index causes a modulation of the Fourier coefficients which
can be easily corrected. Assigning such a quasi-random
sign is intended to prevent cancellations of nearby coeffi-
cients which would look alike in time domain samples. A
more detailed analysis follows for the expected separation
of nearby frequencies [9] which leads to a stabilization of
the Prony method, see [14].

Theorem III.2 Let N ∈ N be prime, the vector x̂ ∈ CN
contain K nonzeros and choose σ ∈ {1, . . . , N − 1} uni-
formly distributed at random. Then the separation distance
of the vector (x̂σj)j=0,...,N−1 ∈ CN fulfils

P
(

min
k 6=l
|σjk − σjl| ≥

N − 1
2K(K − 1)

)
≥ 1

2 . (III.2)

Proof: The frequencies {jk} have
(
K
2
)
pairwise differ-

ences. For each fixed difference s ∈ {1, . . . , N − 1}, there
exist at most 2

(
K
2
)
different values σ ∈ {1, . . . , N−1} such

that mink 6=l |σjk − σjl| = s. We estimate

P
(

min
k 6=l
|σjk − σjl| = s

)
≤ K(K − 1)

N − 1 ,

from which the assertion easily follows.
This result becomes effective for K ∈ o(

√
N) and gives

high probability of success for the Prony method by
independent repetition.

IV. A splitting approach
The most time-consuming steps of Prony-like recovery

methods are the factorization of the Hankel matrix (II.4)
and the least squares solution of the system (II.7). Hence,
the computational costs for the Prony-like methods are
O(K2M) in general and O(K3 log(NK )) if we choose M =
O(K log(NK )) samples. This recovery method is sublinear
in the problem size N but scales cubic in the number K
of non-zeros, such that only very sparse Fourier trans-
forms can be computed in an efficient way. We proceed
by a modification of the Prony-like methods adapted to

the sparse Fourier transform problem to further reduce
computational costs.
Let a number B ∈ N, B ≤ K, of frequency bands be

chosen. Instead of recovering all of the K non-vanishing
Fourier coefficients at once, we split the frequency set
{0, 1, . . . , N − 1} into the disjoint subsets { b−1

B N, b−1
B N +

1, . . . , bBN −1}, b = 1, . . . , B, and assume that N
B is prime

or that {1, . . . , NB } contains many invertible elements σ.
We now determine only coefficients with frequencies in
such a subset in each recovery step.
In order to do so, we use a filter that is concentrated

both in time and frequency. Let ε > ε′ > 0 be two
parameters and set N1 = dε′N/2e and N2 = bεN/2c.
We define the auxiliary function a : [N1, N2] → R using
a1 : R→ R and a2 : [−1, 1]→ R via

a1(x) = e−1/x2
, x ∈ R\{0}, a1(0) = 0,

a2(x) = a1(1− x)
a1(1− x) + a1(1 + x) ,

a(x) = a2(2/(N2 −N1)(x−N1)− 1). (IV.1)

Then, the function a is smooth in [N1, N2], a(N1) = 1,
a(N2) = 0, and all derivatives of a vanish at N1 and N2.
We now set ĝ = (ĝj)N−1

j=0 ∈ RN ,

ĝj =


1, j < N1 and j > N −N1,

0, N2 < j < N −N2,

a(j), j ∈ [N1, N2],
a(N − j), j ∈ [N −N2, N −N1].

and define the final filter for a spatial cut-off W ∈ N,
W < N , typically chosen as W = O(B logN), by h =
(hl)N−1

l=0 ∈ CN ,

hl =
{
gl, l ∈ [−W2 ,

W
2 ],

0, elsewise.

Instead of the signal x, we use the convolved vector

x ∗ h = (
N−1∑
k=0

xkhl−k)N−1
l=0 ∈ CN

in the computation of the sparse Fourier transform. We
have

̂(x ∗ h) = x̂ · ĥ = (x̂j ĥxj)N−1
j=0 .

Therefore, it is likely that the number of non-zero Fourier
coefficients of x ∗ h is smaller than before since most of
the coefficients ĥj , j /∈ { b−1

B N, . . . , bBN − 1}, are (almost)
zero. In case the randomized Prony-like method outputs
a frequency which is not in the currently considered
subset { b−1

B N, . . . , bBN−1}, we discard the corresponding
coefficient, such that the expected number of non-zero
coefficients which we seek to identify in each of the B steps
is K

B . We employ the randomization in each step and use
M1 = O(KB log(NBK )) samples

(Pσ,τ (x ∗ h))l := (x ∗ h)σl+τ ,
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Figure IV.1. Example step of the split Prony-like method.
In step b = 2 of B = 8 computation steps, the signal x of length
N = 28 = 256 (a) with K = 10 non-zeros in its Fourier transform x̂
(b) is convolved with the filter h (c). The resulting vector x∗h (e) is
randomly permuted. In all the subfigures only the real parts of the
complex vectors are plotted.

l = 0, . . . ,M1 − 1, in each recovery step. Figure IV.1,
see also [17], serves as an illustration for this splitting
approach. The effects of convolving the signal x with the
filter h and applying the randomization afterwards are
pictured both in the time domain and in the frequency
domain for a particular example.

Finally, we shortly analyse the expected computational
complexity of this splitted Prony method. As argued
above, the expected number of frequencies is O(KB ) and
we thus choose M1 = O(KB log(NBK )) samples per recov-
ery step. The computationally most expensive parts of
one step then is spatial filtering which takes O(M1W )
arithmetic operations and the Prony-like method requiring
O(M1

K2

B2 ) arithmetic operations. Moreover, we assume a
spatial filter length W = O(B logN), which is supported
for a particular error measure in [8], [6], [7], and choose
the optimal value B = O(K 2

3 ) of recovery steps. In total,
this leads to a complexity of O(K 5

3 log2 N). While this
is beyond the recently achieved bounds for sparse FFTs

we nevertheless expect a wider applicability due to the
fact that Prony-like methods seem to be more stable with
respect to off-grid frequencies, cf. [3].
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