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This paper presents a general architecture towards a more generic approach to command 
interpretation in conversational agents. Our architecture contains generic (in sense of application- 
independent) natural language (NL) modules that are based on ontologies and agent introspection. We 
will especially focus on the presentation of the event generator (introspection part) and dialogue 
manager (application independent part) modules, which rely on a bottom-up approach for matching 
the user’s command with the set of currently possible actions. 
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1. INTRODUCTION 

Recent works on Embodied Conversational Agents (ECA) [7] and more generally conversational 
systems [2] showed that natural language (NL) interaction is one crucial step in the course towards a more 
natural human-agent interaction. However, the chosen approaches in ECA mostly rely on ad-hoc pattern 
matching without semantic analysis [1]. The dialogue system community, on the other hand, proposes to use 
ontologies to improve genericity [9,14]. The main idea behind the use of ontologies is to specify generic 
algorithms that only depend on the ontology formalism. Thus, applications only depend on the ontology and 
the specific application problem-solver. Systems like [9], [15] use the ontology to parameterize a generic 
parser. However, in such systems, the ontology formalism itself is ad-hoc. It strongly depends on the 
application type and does not allow generic knowledge representation. Moreover, these ontologies describe 
the application model as well as the application actions. Our claim is that it should be possible to extract the 
meaning of actions from the code itself. The ontology then is no longer an application descriptor. It only 
provides the complementary semantic information on relations between the application concepts (which is 
the initial role of ontologies). Moreover, systems that use generic knowledge representation (e.g. [14]) rely 
on application-dependent parsers. However, the parser uses the structure of the ontology to understand over-
specified or under-specified commands like “switch the light on” (the system will propose the different 
possible locations to enlighten). 

This paper focuses on command interpretation for intelligent agents. We propose a generic NL system 
based upon a domain ontology and agents capable of introspection. The system extracts the set of possible 
actions from the agent's code and matches these actions with the user's command using the ontology as a 
glue. In addition, a score-based dialogue manager (like [11]) deals with misunderstood or indefinite 
commands. 

Our paper is organised as follows. In the second section, we give a general overview of our agent 
model. The third, fourth and fifth sections present the natural language processing algorithm we use. We first 
present the parser (section 3), then a general overview and related work (section 4) and finally detail our 
algorithm for command interpretation using introspection (section 5). We also present our dialogue manager 
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that deals with clarification in section 6. Section 7 presents the evaluation we made with several users of the 
system. Section 8 concludes the paper. 

2. OVERVIEW OF OUR MODEL 

Our aim is to be able to program cognitive agents that can be controlled by natural language 
commands, and that are capable of reasoning about their own actions, so as to answer questions about their 
behaviour and their activity. To this purpose, we rely upon a specific language that allows to access to the 
description of the agent's internal state and actions at runtime: the View Design Language (VDL) language. 

The VDL model is based on XML tree rewriting: the agent's description is an XML tree whose nodes 
represent either data or actions. The agent rewrites the tree at every execution step according to these specific 
elements. This model allows agents to access at runtime the description of their actions and to reason about it 
for planning, formal question answering [16], behaviour recognition [17], etc. The VDL agent model can be 
used for web services composition [8], Embodied Conversational Agents [18], social behaviour simulation, 
etc. 

In the VDL model, every agent is provided with a domain ontology written in OWL. This ontology 
must contain at least all the concepts used by the agent (i.e. the VDL concepts), either as XML tags (except 
for VDL keywords), attributes names and values or CDATA contents. We note VDLC  the set of the VDL 

concepts and OWLC  the set of the OWL concepts, individuals and properties. We define an injective mapping 

VDLmap  defined on the set VDLC  and taking values in the set OWLC , to match VDL concepts on the 
ontology. 

We can exhibit two kinds of behaviour for an autonomous agent provided with interaction capabilities 
[10]: 

* The reactive behaviour is used when the agent performs operations in response to a command (a 
typical example is a start/stop operation). 

* The proactive behaviour is the capability for the agent to run independently of any command. 
In this paper, as we focus on the human-machine interaction, we will only work on reactions. In VDL, 

reactions are triggered by external events, i.e. XML nodes sent to the agent at runtime for command. They 
are the formal representation of commands. External events correspond to the content of “request” ACL 
messages, whereas reactions describe how such messages (sent by other agents or by the user) must be 
processed. The aim of the NLP system presented in this paper is to build VDL events from a user's 
command. 

Message processing in MAS protocols can be decomposed in two stages. In the first stage, a parser 
checks the message's syntax (eventually, the message could be rejected). It ensures that the reaction will be 
able to process the event and it switches the event to the correct reaction. In the second stage, the reaction 
processes the event itself according to the agent's internal state and reaction's definition (i.e. behaviour). It 
must extract relevant information (i.e. parameters expected by the reaction) from the event and then perform 
modifications. However, these modifications will be performed only if the current agent's context (internal 
state) allows it. 

In VDL, as in most action representation models, actions are defined as a triple <N,P,E> where N is the 
action name, P is the set of preconditions of the action and E its effects. The parser and context verification 
must be implemented within the agent using preconditions. Based on the previous definitions, we 
characterise four kinds of preconditions for a reaction r in R, the set of agent reactions: 

* )(rPe  is the set of event preconditions. They are used to ensure that a given action is triggered by a 
given class of events. Their interpretation relies on subsumption for checking the structure of the received 
event. 

* )(rPs  is the set of structure preconditions set. It is used to check the message's syntax and to ensure 

that the action will be able to process the event. Preconditions in )(rPs  do not depend on the agent's internal 
state, but only on the received event. 
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* )(rPc  is the set of context preconditions. Such preconditions only depend on the agent's internal 
state. For example, a (simulated) robot cannot move when it runs out of energy. 

* )(rPcs  is the set of contextual structure preconditions, i.e. preconditions that depend both on events 

(selected by )(rPe ) and on the agent's internal state. For example, a robot cannot catch an object when this 
object is out of reach. 

We note { }U
Rr

ee rPP
∈

= )( . For all ePe∈ , we note { })()( rPeRreR ee ∈∈=  the set of reactions that 

process the event e. 

3. NLP TOOLCHAIN AND GLOBAL ARCHITECTURE 

This section gives a general overview of the NLP tool chain and the global system's architecture. In our 
project (see figure 1), the lexical module is based on the default Open NLP tokenizer, tagger and chunker. 
Additionally we make use of a home-made lemmatizer. As anticipated in [13], the use of a grammar based 
syntactic parser is not relevant for NL commands. In fact, users often command the system with keywords 
rather than well-structured sentences (e.g. “drop object low” or “take blue”). Thus, we represent the content 
of sentences as bags of words, after having removed stop-words identified by their tags. 

  

 Figure 1. Global Architecture.  

The semantic analysis is the core of our model. Our aim is to use ontologies for concepts matching. In 
the current stage, we simply use synonymy for linking the user's command with VDL concepts. For 
( ) 2, OWLCyx ∈ , we define the distance between x and y with respect to synonymy as: 

( ) ( )0 if ( , )
( , )

1 else
sameas

syn
x y owl x y

dist x y
 = ∨

= 


 (1)

with ),( yxowlsameas  being the transitive and reflexive relation for concept synonymy in OWL. 
Our semantic analysis method relies on the hypothesis of semantic connectivity [19]: every concept 

that appears within a relevant command must be defined in the ontology. This hypothesis is enriched with 
our ),( yxdistsyn  operator: 

Every concept that appears within a relevant command is either directly associated with a VDL 
concept or is in a OWL sameAs relation with an agent's concept. 

More precisely, if we note S the bag of words that represent the user sentence, we can build the set C of 
known concepts as follows: 
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{ }. ( ( ), ) 0VDL syn VDLC c C s S dist map c s= ∈ ∈ =  (2)

C contains the set of all VDL concepts that appear within the user's command. Similarly, we build the 
set U of not-understood concepts: 

{ }. ( ( ), ) 1VDL syn VDLU s S c C dist map c s= ∈ ∀ ∈ =  (3)

U contains the set of command words that do not appear within the agent's description. Note that the 
construction of C and U is only a preliminary step for the algorithm described in section 5. 

The last part of our chain is an English NL generator that transforms any VDL node into an English 
sentence, by appending the translation of concepts obtained by a depth-first search of the node. Generally, 
this recursive algorithm prints the node's tag, its attributes as “attribute is value”, its content (if any) and then 
all its sub-elements. For instance: 

   <take position=“out”> <shape>square</shape> </take> 
will become “take position is out shape is square”. Moreover, we use specific rules for VDL keywords. 

The resulting outputs are awful from a syntactical point of view, but it is sufficient for users to 
understand the system's proposal or explanations. However, it is possible to improve it significantly using an 
XML-based NL generator such as [4] that does not require any template. 

The next two sections show how the set C of known concepts is used to build VDL events using an 
introspection NL algorithm. 

4. GENERAL OVERVIEW OF THE INTROSPECTION ALGORITHM 

Our approach is based on Allen's bottom-up approach [3]. The classical bottom-up approach makes use 
of an early defined list of competences and tries to match the natural language command onto one of the 
possible formal commands (e.g. [15], [9]). However, the competences list has to forecast all possible 
dialogues (even problem cases) and their translation into formal commands (possibly with parameters). To 
avoid this issue, we propose to adopt a constructive bottom-up approach based on preconditions analysis. 
Our approach uses contextual information (obtained from the agent's code at runtime) to determine which 
events can be processed by the agent in the current state. This issue has been widely studied for software 
validation (e.g. [5]) and showed interesting results for testbeds generation. 

Our system builds the list of possible events from the agent's point of view, without concern about 
whether any of those matches the user's command. Similarly, using constraints relaxation on context 
preconditions and contextual structure preconditions ( )(rPc  and )(rPcs ), it builds the lists of “currently 
impossible” events, i.e. events that are not acceptable by the agent in its current state but that would be 
accepted in a different state. 

The next section presents the algorithm that computes the possible and the impossible events set and 
selects relevant events. Section 6 presents the Dialogue Manager (DM) that deals with the sets of possible 
and impossible events to generate better feedback to user. 

5. EVENTS GENERATION AND SELECTION 

The event generation algorithm is responsible for building a set of potential event. It is the core of our 
NL command processing system. It allows the system to use the agent's actions description (extracted from 
the agent's code itself) so as to build the set of events that can be carried out by the agent. This avoids the use 
of priorly defined static competences lists. 

Our algorithm builds both the set of possible events E and the set of “currently impossible” events F. 
We use event preconditions ( eP ) to provide the initial skeleton of the event. Since eP  filters external events 
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using subsumption, all events build by addition of sub-elements to a skeleton ePe∈  will be accepted and 
reciprocally, all accepted events must be build from a skeleton. We note Ψ  the (infinite) set of all possible 
VDL nodes. To compute E, we remove from eP  events that cannot be processed currently: 

( )

( ), ( , ) T
r

e c e c
r R e

P e P p P r eval p e+
∈

  = ∈ ∀ ∈ = 
  

U  (4)

with { }FalseTrue,: 2 →Ψeval  (we will note only T and F in place of True and False in future equation), 
the precondition evaluation function: T),(),( =∈∀ epevalrPp x   if and only if the precondition p is valid 
with respect to the event e and the current agent's state. ceP +  is the set of event skeletons that are accepted by 
the agent with respect to constraint preconditions ( cP ). Note that ece PP ⊆+ . 

Now we use structure and contextual structure preconditions ( sP  and csP ) as a set of constraints on the 
events to refine event skeletons into actual events. For all ePe∈ , we note Ψ∈),( rerefine  the event 
obtained from the skeleton e and the set of preconditions )()( rPrP css U  of the action )(eRr e∈  using our 
test-bed generation based algorithm. The complete algorithm for refine is too long to be presented here. It 
strongly relies on the VDL model's operational semantics. It is based on a recursive interpretation of VDL 
terms with different rules for each VDL keyword. 

This leads to the set of syntactically correct events: 

{ }( , ), , ( ) ( ) ( ), ( , ( , )) Te c e s csE refine e r e P r R e p P r P r eval p refine e r+′ = ∀ ∈ ∀ ∈ ∀ ∈ =U  (5)

{ }( , ), , ( ) ( ), ( , ( , )) Te c e sF refine e r e P r R e p P r eval p refine e r E+′ ′= ∀ ∈ ∀ ∈ ∀ ∈ = I  (6)

E’ is the set of possible events: all events in E’ will be accepted by the agent and all accepted events 
belong to E’. Conversely, F’ is the set of “currently impossible” events, i.e. events that are not acceptable by 
the agent in its current state but that would be accepted in a different state. 

Once possible and currently impossible events have been generated, the selection algorithm tries to 
select the most appropriate one with respect to the user's command. The general idea is to compute the 
probability of every event in FE ′′U  and to determine the maximum probability event in E’ and F’. 

For every node Ψ∈n  and for any concept Cc∈ , we note 
( ))()()()(),( xcontentxattributesxtagcnsubxcncontains UU∈∈∃= , with sub(n) the set of all direct 

and indirect sub-elements of Ψ∈n . In other words, contains(n,c) is true iff c appears anywhere within node 
n. The probability p(e) of an event FEe ′′∈ U  is: 

{ }( , )
( )

c C contains e c
p e

C

∈
=  (7)

We can build the set E of maximum-probability possible events and the set F of maximum-probability 
“currently impossible” events (X=E or X=F): 

{ }
{ }{ }

max ( ), 0

, ( ) max ( ),

if p x x X
X

e X p e p x x X otherwise

′ ∅ ∈ ==  ′ ′∈ = ∈
 (8)

Moreover, Fe∈∀ , we note np(e) the set of invalid preconditions that make this event impossible to 
process: 



Laurent MAZUEL, Nicolas SABOURET 86 

{ }( ) ( ) ( ) ( ), ( ) Fc s csnp e p P e P e P e eval p= ∈ =U U  (9)

 
Note that, by construction, all events in E (resp. F) have the same probability: , ( ) ee E p e p∀ ∈ =  and 

, ( ) fe F p e p∀ ∈ = . 

6. USER’S FEEDBACK: THE DIALOGUE MANAGER 

The dialogue manager (DM) is responsible for both command acknowledgement and management of 
misunderstood or imprecise commands. The DM will produce different answers depending on the different 
contextual situations. 

We make use of two thresholds in [0.0,1.0] (as ep  and fp ). minp  is the minimum value for an event 

to be considered as possibly understood command and maxp  is the further limit beyond which the event is 
considered as a correct representation of the user's command. They correspond respectively to the “tell me” 
and “do it” thresholds for Patty Maes in [11]. She proposed empirically to use a margin for accepting events: 

3.0min =p  and 8.0max =p . 

The answer given by the DM depends on the position of ep  and fp  with respect to minp  and maxp : 

1. If maxppe ≥ , the command is considered as correctly understood by the system. The DM either 

sends the event to the agent (when 1E =  |) or informs the user about an ambiguity (when 1E > ). 
For instance: 
User:   Take something red 
System:  I can either take object square red, take object triangle red. 

2. If ( ) ( )min maxe e fp p p p p< < ∧ < , the best understood event is not possible ( fe pp < ) but 

something close was understood which is still possible ( epp <min ). The DM asks the user for a 

reformulation. It displays both failed preconditions of impossible events ( ( )
e F

np e
∈
U ) and the list of 

possible events E. 
User:   Put it on the upper left cell (with upper left cell already occupied) 
System:  I can't because: the content of upper left cell is not empty. Therefore, i can either: - 

drop object in the upper middle, in the upper right, in the center left or in the lower left 
3. If ( ) ( )min maxe f ep p p p p< < ∧ < , the impossible events can be ignored, but still the system is not 

sure about the user's command ( maxppe < ). It asks for a confirmation by displaying events Ee∈ . 
User:   Take the blue or red triangle form (while there is no blue triangle) 
System: Do you mean “take object triangle red”? 

4. If ( ) ( )min maxe fp p p p< ∧ < , the system correctly understood an impossible command. It tells the 

user that this command is not possible by giving the list of failed preconditions Feenp ∈),( . 
User:   Take the blue red figure (with something already in hand) 
System:  I can't because : the content of hand is not empty. 

5. If ( ) ( )min mine fp p p p< ∧ < , the system might have understood something but this command cannot 

be performed. The DM asks the user for confirmation. 
6. If ( ) ( )min mine fp p p p< ∧ < , the system didn't understand the command and tells it to the user. 
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7. EVALUATION 

Our experiment was conducted using a simple agent called Jojo inspired from Winograd's block's 
world [20]. This agent has two possible actions: to take an object or to drop it into a given position in a 
“grid”. An object is characterised by its shape (shape { }circletrianglesquare ,,∈ ), its colour (colour 
{ }whitebluegreenred ,,,∈ ) and its size (size { }bigmediumsmalltiny ,,,∈ ). A position is a couple in 

{ } { }leftmiddlerightlowercenterupper ,,,, × . Examples in the dialogue manager's algorithm come from 
this experiment's corpus. 

None of the eight subjects for this experiment had ever used the system before. They were given no 
information on the system's NLP capabilities. The aim was to reach a given particular state (see figure 2). No 
time limitation was given, but the subject could stop the experience at any time. After performing the task, 
the subject completed a questionnaire. The questionnaire asks for the subject's appreciations on the system's 
NLP capabilities. 

The subject's evaluation of the system outlines the lack of semantic interpretation of commands, which 
make the system unable to understand complex command like “take the smallest triangle” or “drop it in place 
of the red form”. This result was expected since we only use the owl:sameAs relation for “semantic” 
relations! Once the subjects had acquired the agent's vocabulary (i.e. the transitive closure of owl:sameAs in 
the ontology with respect to the agent's VDL concepts), no interpretation error occurs and the users are rather 
satisfied with the system. The feedback provided by the dialogue manager especially appears to be clear 
enough about what the agent expects from the user. From a mixed-initiative planning perspective, since the 
system always proposes a list of possible events when it cannot exactly find one with full probability of 
acceptability, the user knows exactly what the system expects. Moreover, users receive explanations about 
impossible commands. 

   
Figure 2. Operation example. 

Note that this evaluation is a small part of a bigger evaluation made to compare three interpretation 
algorithms [12]. This section gives the evaluation results of the best of the three algorithms, “the bottom-up 
with feedback” presented here. 

8. CONCLUSIONS AND PERSPECTIVES 

In this paper, we proposed a general NLP architecture for command interpretation based on the idea 
that generic algorithms can be parameterized by the agent's code and a domain ontology. Our system relies 
on a constructive bottom-up approach based upon the action preconditions. Even if we use the VDL 
language for programming our agents, the approach is language-independent and can be easily adapted to 
others introspection-capable models. 

We conducted an evaluation of our system that shows that the feedback provided by the DM allows the 
user to align on the agent's ontology. Our system tells the user why a given command cannot be performed 
and shows the system's expectations. Users have the feeling that the system is “more clever” with our 
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constructive bottom-up DM than with classical approaches. This evaluation also shows that the limitation of 
our system resides in the minimal semantic analysis on the ontology (synonymy). To overcome this issue, we 
propose to use advanced semantic distance measures (as given by [6] for instance) for associating the human 
command concepts with the agent's concepts in the ontology. The first work we have already done in this 
direction outlined the importance of the ontology definition. Using too general ontologies such as WordNet 
leads to misinterpretation at the semantic interpretation level. On the contrary, domain ontologies allows the 
programmer to define specific relations between agent concepts. 
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