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ABSTRACT

In this contribution, the Cramér-Rao Bound (CRB) for direction of
arrival (DOA) estimation in presence of strict sense non-circular
sources is given. These types of sources are used in numerousprac-
tical systems and enhancements to parameter estimation methods
exploiting non-circularity have received considerable attention re-
cently [5, 12, 1, 8]. While closed-form expressions for the CRB
for other types of non-circularity are known [3], the closed-form
expression for the CRB for this data model is not available inthe
literature to date. After providing the closed-form expression, some
interesting special cases are discussed. The cases where strict sense
non-circularity does not provide any gain over generic source con-
stellations are stated. Moreover, it is demonstrated that under certain
conditions the joint CRB may decouple into independent groups. It
is also shown that the number of sources which can be estimated
jointly is increased. The analytical results are supportedby com-
puter simulations which show the Cramér-Rao Bounds along with
the corresponding versions of the Unitary ESPRIT algorithm.

1. INTRODUCTION

Estimating the directions of arrival of several planer wavefronts im-
pinging on an antenna array is a task required for a variety ofappli-
cations, including channel modeling, radar, communications, sonar,
and seismology. In recent publications it was shown how existing pa-
rameter estimation methods can be improved if the source symbols
fulfill a condition we term strict sense non-circularity, e.g., the NC
Unitary ESPRIT algorithm discussed in [5], extensions to standard
ESPRIT given in [12], or improved versions of MUSIC proposedin
[1, 8]. In this contribution, the deterministic Cramér-Rao Bound for
strict sense non-circular sources is discussed. For this data model, a
closed-form expression for the CRB has not been derived before.

This paper is organized as follows. First, the data model is in-
troduced and weak sense as well as strict sense non-circularity is
defined. Then the Cramér-Rao Bound for strict sense non-circular
sources is shown. The main steps of its derivation are outlined. In
the next part, interesting special cases of the CRB are discussed. In
particular, the cases where the restriction to non-circular source con-
stellations does not provide any gain are outlined. In the case of
two or more sources with small angular separation, the achievable
gains are shown. The fact that the non-circular data model facil-
itates the estimation of twice the number of sources compared to
generic source constellations is also highlighted. Finally, some nu-
merical results demonstrate the Cramér-Rao Bounds along with the
performance of the corresponding versions of the Unitary ESPRIT
algorithm [4, 5].

2. DATA MODEL

The following simplified model is used for the description ofthe
proposed methods: We assume that the measurements represent a
superposition ofd specular components resulting from narrowband
sources located in the far field of the antenna array. We can there-
fore write the measurement matrixX ∈ C

M×N containing samples
from theM antenna elements atN subsequent time instances as

X = A · S + N , (1)

whereA ∈ C
M×d denotes the array steering matrix which consists

of d array steering vectorsa1, . . . , ad, S ∈ C
d×N containesN

subsequent symbols from thed users, andN ∈ C
M×N represents

samples of the additive noise component which are assumed tobe
complex Gaussian distributed with zero mean and varianceσ2 and
mutually uncorrelated.

Strict sense non-circularity can be defined through the
non-circularity rate [3] which we denote byϑ. For every complex
random variableZ with mean zero, the non-circularity rate is given
by

ϑ =
E
{

Z2
}

E{|Z|2}
. (2)

A random variable for whichϑ is equal to zero is termed circularly
symmetric. Conversely, the case where|ϑ| > 0 is referred to as
weak sense non-circularity. It can be shown that for any zeromean
complex random variableZ the non-circularity rate fulfills|ϑ| ≤ 1
with equality if and only if the real part and the imaginary part of Z
are linearly dependent, i.e.,c1 ·Re {Z} = c2 · Im {Z} for constants
c1, c2 ∈ R. This particular case is referred to as strict sense non-
circularity, i.e., a random variableZ is strict sense non-circular if
and only if its non-circularity rateϑ satisfies|ϑ| = 1.

The Cramér-Rao Bound for weak sense non-circular sources has
been derived in [3]. However, this bound does not apply to thestrict
sense case since in the weak sense case the real part and the imag-
inary part can be treated as different random variables. This is not
true in the strict sense case due to the linear dependence.

In the context of direction of arrival estimation, the requirement
for strict sense non-circular sources is that for each source the sym-
bols that are received are located on a line in the I/Q diagram. Such
a scenario is, for example, found when the sources transmit real-
valued data but may have different transmit delays and therefore their
phase anglesϕi, i = 1, 2, . . . , d at the receiver can be different. The
strict sense non-circularity constraint is incorporated into the data
model in the following fashion

X = A · Ψ · S0 + N , (3)



where now the matrixS0 ∈ R
d×N contains real-valued symbols

from d sources atN time instances and the matrixΨ is constructed
from the phasesϕi, i = 1, 2, . . . , d in the following fashion

Ψ = diag
{[

ejϕ1 , ejϕ2 , . . . , ejϕd

]}

. (4)

3. CRAMÉR-RAO BOUND

The Cramér-Rao Bound represents a lower limit on the variance of
any unbiased estimator [2, 6] and is therefore a valuable tool to
benchmark the performance of parameter estimation methods. In
particular, the Cramér-Rao inequality states that the covariance ma-
trix of any unbiased estimator̂θ(x) aiming to compute estimates for
a parameter vectorθ from an observation vectorx satisfies

COV
{

θ̂(x)
}

≥ C (5)

whereCdenotes the corresponding CRB matrix and the inequality
is to be understood in the following sense

A ≥ B ⇔ A − B is positive semi-definite. (6)

The CRB matrix is computed from the inverse of the Fisher infor-
mation matrix (see below).

Closed-form expressions for the Cramér-Rao Bound have been
derived under various assumptions. The most prominent among
these are the deterministic CRB (assuming that the symbols are ar-
bitrary complex numbers which are constant but unknown at the re-
ceiver) [9] and the stochastic CRB (assuming that the symbols repre-
sent samples from a complex random process with known covariance
matrix) [10]. The latter was also derived for weak sense non-circular
sources in [3]. However, as it has been mentioned above, thisCRB
is not applicable in the strict sense non-circular case since there we
cannot assume the real part and the imaginary part of the symbols to
be independent random variables anymore.

In this paper, we consider the deterministic case, i.e., we model
the symbols to be constant but unknown random variables. In the
case of arbitrary (i.e., not neccessarily non-circular) constellations,
the set of parameters that need to be considered is then givenby:

• The azimuth anglesθ ∈ R
d.

• The real part and the imaginary part of thed · N symbols
s = vec {S} ∈ C

d·N .

• The standard deviation of the noiseσ,

constituting a total of(2N + 1)d + 1 paremters. For the 2-D case
(i.e., joint azimuth and elevation estimation) we additionally have
thed elevation anglesα ∈ R

d. For simplicity, we present the 1-D
case first. The generalization to the 2-D case is shown in Section 4.

The CRB matrix derived under these assumptions is denoted by
C . Its closed-form expression is given by [9]

C =
σ2

2N
· Re

{(

D
H · Π⊥

A · D
)

� R̂S

}−1

(7)

Π
⊥

A = IM − A ·
(

A
H · A

)−1

· AH

R̂S = Ψ
∗ · R̂S,0 · Ψ, R̂S,0 =

1

N
S0S

T
0

D =

[

∂a1

∂θ1
,

∂a2

∂θ2
, , . . . ,

∂ad

∂θd

]

.

In contrast to this approach, for strict sense non-circularsources the
set of parameters is given by:

• The azimuth anglesθ ∈ R
d.

• Thed · N real-valued symbolss0 = vec {S0} ∈ R
d·N .

• Thed phase anglesϕ ∈ R
d.

• The standard deviation of the noiseσ.

As we can see the number of parameters is now equal to(2+N)d+1.
Under these conditions, it can be shown that the expression for the
deterministic CRB is given by equation (8) (see below), where the
matricesGn, Hn, n = 0, 1, 2 are defined as

G0 = Re
{

Ψ
∗ · AH · A · Ψ

}

H0 = Im
{

Ψ
∗ · AH · A · Ψ

}

G1 = Re
{

Ψ
∗ · DH · A · Ψ

}

H1 = Im
{

Ψ
∗ · DH · A · Ψ

}

G2 = Re
{

Ψ
∗ · DH · D · Ψ

}

H2 = Im
{

Ψ
∗ · DH · D · Ψ

}

(9)

and the remaining terms are defined in (7). The derivation of (8) can
be carried out in analogy to the one presented in [9]. The mainsteps
are:

• Establishing the probability density function (pdf) of themea-
surements. Since the parameters are assumed constant, the
measurement samples are complex Gaussian distributed with
mean given by the measurement model.

• Computing the log-likelihood function (LLF) as the
logarithm of the pdf. It is a function depending on the
current realization of the measurement process as well as all
the parameters which are to be estimated.

• From the LLF we can obtain the score-functionq which is
a vector containing the partial derivatives of the LLF with
respect to all the parameters. It is important to include not
only the parameters which we would like to estimate but also
the nuisance parameters.

• The Fisher information matrixJ is then given byE
{

qqT
}

where the expectation is carried out with respect to the noise.

• Finally, the CRB matrix is given by the inverse ofJ . Since we
are only interested in the variance of the direction of arrival
angles, we usually only consider the block of the CRB matrix
related to these paramteres.

A full version of the proof is given in [7].

4. GENERALIZATION TO THE 2-D CASE

The deterministic CRB shown in equation (7) can easily be gener-
alized to the 2-D case (i.e., joint estimation of the azimuthanglesθ
and the elevation anglesα) in the following way [11]

C2D =
σ2

2N
· Re

{(

D
H
2D · Π⊥

A · D2D

)

� R̂S,2D

}−1

, where

D2D =

[

∂a1

∂θ1
, . . . ,

∂ad

∂θd

,
∂a1

∂α1
, . . . ,

∂ad

∂αd

]

∈ C
M×2d (10)

R̂S,2D =

[

1 1
1 1

]

⊗ R̂S ∈ C
2d×2d.

Here⊗ represents the Kronecker product operator.
In a very similar manner, the CRB for strict sense non-circular

sources provided in equation (8) is generalized to the 2-D case by
replacing

R̂S,0 by

[

1 1
1 1

]

⊗ R̂S,0 (11)

and D by D2D (12)

in equations (8) and (9).



C(nc) = σ2

2N

{

(

G2 − G1G
−1
0 GT

1

)

� R̂S,0 +
[

(

G1G
−1
0 H0

)

� R̂S,0

] [

(

G0 − HT
0 G−1

0 H0

)

� R̂S,0

]−1

·
[

(

HT
1 − HT

0 G−1
0 GT

1

)

� R̂S,0

]

+
[

H1 � R̂S,0

]

·
[

G0 � R̂S,0

]−1

·
[

(

HT
0 G−1

0 GT
1

)

� R̂S,0

]

+
[

H1 � R̂S,0

]

·
[

G0 � R̂S,0

]−1

·
[

(

HT
0 G−1

0 H0

)

� R̂S,0

]

·
[

(

G0 − HT
0 G−1

0 H0

)

� R̂S,0

]−1

·
[

(

HT
0 G−1

0 GT
1

)

� R̂S,0

]

−
[

H1 � R̂S,0

]

·
[

(

G0 − HT
0 G−1

0 H0

)

� R̂S,0

]−1

·
[

HT
1 � R̂S,0

] }−1

,

(8)

5. PROPERTIES OF THE CRB

Using the closed form expression for the CRB in (8), a number of
interesting results can be shown analytically.

Full coherence: If all the d sources are coherent, i.e., the
magnitude of the sample cross correlation coefficients between each
pair of sources is equal to one, it can be shown thatC(nc) = C .
Therefore, in this case restricting the source constellations to be non-
circular does not provide any gain in terms of the estimationaccu-
racy of any unbiased estimator.

Equal phases: The same effect is observed when the phase
angles of all the sources are equal moduloπ, i.e.,ϕi = ϕ + ki · π
for i = 1, 2, . . . , d, ki ∈ Z, and an arbitraryϕ. This implies that
the symbols received fromall the users are constrained toa single
line in the I/Q diagram. In this case there is also no gain fromusing
non-circular sources sinceC(nc) = C .

Single source: Finally, the case where there is only one source
(i.e., d = 1) can be seen as a special case of both cases mentioned
above. Consequently, the CRBs (which are in this case scalar) satisfy
againC(nc) = C and the restriction to non-circular source constel-
lations does not provide any gain, which is, in fact, rather surprising.

In the case where there aretwo sourcesit is therefore interesting
to study the effect of the sample correlation coefficientρ̂ defined as

ρ̂ =
1
N

∑N

t=1 s0,1(t)s0,2(t)
√

1
N

∑N

t=1 s0,1(t)2
√

1
N

∑N

t=1 s0,2(t)2
(13)

and the phase separation∆ϕ = ϕ1 − ϕ2. For the latter, from its
meaning in the complex I/Q diagram it is easily deduced that only
the interval between∆ϕ = 0 and∆ϕ = π/2 is of interest1. We can
then prove the following results:

• For two sources approaching in the azimuth plane, we have

lim
|θ1−θ2|→0

C
(nc) = C

(nc)
lim , where (14)

tr
{

C
(nc)
lim

}

< ∞ ⇔ ρ̂ < 1 and ∆ϕ > 0,

wheretr {.} denotes the trace of a matrix. In other words, the
CRB C(nc) reaches a finite value if the sources are not fully
coherent and have a different phase. It should be noted that
this results in a significant gain over the CRBC since

lim
|θ1−θ2|→0

tr {C} → ∞ ∀ρ̂, ∀∆ϕ (15)

• If we haveρ̂ = 0 and ∆ϕ = π/2, i.e., perfectly uncorrelated
sources with maximum phase separation then the joint CRB
of the two sources is a diagonal matrix containing the single-
source CRBs for each of the sources on the diagonal. In other
words, the two sources are completely decoupled, as if each
of them was present alone. While the conditions for this case
seem rather restrictive, it should be noted that this still is ap-
proximately true if the conditions are not exactly met (i.e.,
small residual correlation or almost maximum phase separa-
tion).

1The behavior of the CRB is symmetric in∆ϕ since users can be ex-
changed andπ-periodic since real-valued data streams can be multipliedby
a factor of -1.

In Figure 1 we display the finite valuetr
{

C
(nc)
lim

}

. The top graph

shows a 3d plot oftr
{

C
(nc)
lim

}

versus both,̂ρ and∆ϕ. The two

graphs below display the behavior versusρ̂ for selected values of

∆ϕ and vice versa. We can see thattr
{

C
(nc)
lim

}

goes to infinity for

ρ̂ → 1 and∆ϕ → 0. The behavior oftr
{

C(nc)
}

andtr {C} for

varying∆θ is shown in Figure 2. On the left hand side we see the
trace ofC(nc), on the right hand side the trace ofC for comparison.
The four subplots represent four different values ofρ̂: The top-left
graph represents the uncorrelated caseρ̂ = 0 (leading to perfect
decoupling forC(nc)), whereas the bottom-right graph shows full
coherence. Note that in the case where∆θ → 0 the trace ofC(nc)

reaches a finite value for∆ϕ 6= 0 and ρ̂ < 1 and the trace ofC
never reaches a finite value.

The decoupling result can be generalized to more than two
sources in the following way: Suppose all the sources are perfectly
uncorrelated, such that̂RS,0 is a diagonal matrix. Additionally, the
phase angles must fulfill the conditionϕi = ϕ[1] + ki · π or
ϕi = ϕ[2] + ki · π, for ki ∈ Z andi = 1, 2, . . . , d, i.e., modulo
π there are only two different phase angles:ϕ[1] and ϕ[2]

(corresponding to two distinct lines in the I/Q diagram). Ifthen
additionally |ϕ[1] − ϕ[2]| = π/2 then the joint CRB of all the
sources decouples into two groups: All the users with phaseϕ[1] are
completely decoupled from the users with phaseϕ[2] as if each of
the groups was present alone. This results in a significant gain
compared to the CRB for arbitrary source constellations if there are
closely spaced sources that belong to different groups. Once again,
this theorem is still approximately true if the strict conditions are
not exactly fulfilled (e.g., small correlation).

Finally, another advantage non-circular sources are able to pro-
vide is in the total number of sources that can be estimated jointly.
As an example, consider a uniform linear array withM sensors. In
this case,d = M − 1 sources can be estimated jointly using ar-
bitrary (non neccessarily strict sense non-circular) source constella-
tions. Now it can be shown that forC(nc) the number of sources
can be as large asd = 2(M − 1) as long asnoneof the sources are
coherent (i.e., the sample correlation coefficientsρ̂i,j all have a mag-
nitude less than one fori 6= j) and the phase angles are all different
modulo π: mod(ϕi, π) 6= mod(ϕj , π) ∀i 6= j ∈ {1, 2, . . . , d}
(i.e., all the lines in the I/Q diagram are distinct). This has also been
observed for the NC Unitary ESPRIT algorithm [5].

6. SIMULATION RESULTS

These features can also be demonstrated through computer simula-
tions. Here, we compare the Unitary ESPRIT algorithm [4] andthe
corresponding deterministic CRB from (7) with the NC Unitary ES-
PRIT algorithm [5] and the CRB for strict sense non-circularsources
from (8). As an example, consider Figure 3 where the separation of
d = 2 uncorrelated sources is varied for anM = 8 sensor uniform
linear array (ULA) usingN = 10 subsequent snapshots. The SNR
is set to 30 dB. We can clearly see how exploiting the strict sense
non-circularity condition leads to a root mean square estimation er-
ror and a CRB that is constant as the two sources approach.

In Figure 4 the number of sensors is changed to 5 and the number
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Fig. 1. Limit of the CRB for two sources and∆θ → 0 as a function of the correlation coefficientρ̂ and the phase separation∆ϕ.
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of sources is varied to demonstrate that the limit on the number of
resolvable sources is doubled fromM − 1 to 2(M − 1). The phase
angles are drawn randomly according to a uniform distribution in
[0, 2π], the azimuth angles are set deterministically in the interval
[20◦, 160◦] with a fixed separation of20◦.

7. CONCLUSIONS

In this contribution, the Cramér-Rao Bound for strict sense non-
circular sources is discussed. First, a closed form expression for
the CRB for this data model is given. Then its behavior in some
interesting special cases is studied. In particular, it is demonstrated
that in the case where two sources approach the same position, a fi-
nite value for the CRB is reached. This implies a significant gain
compared to arbitrary (i.e., not necessarily non-circular) source con-
stellations where the CRB approaches infinity. The scenarios where
the non-circular sources do not lead to any improvement in terms of
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Fig. 3. Root mean square estimation error for Unitary ESPRIT (UE)
and NC Unitary ESPRIT (NCUE) together with the corresponding
CRBs versus the separation ofd = 2 uncorrelated sources.
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Fig. 4. Comparison of Unitary ESPRIT (UE) and NC Unitary ES-
PRIT (NCUE) versus the number of sourcesd for a 5 sensor ULA.
The number of resolvable sources is doubled.

the CRB are also outlined. The results are supported by computer
simulations where the CRBs are compared with the corresponding
versions of the Unitary ESPRIT algorithm.
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