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ABSTRACT

In this contribution, the Cramér-Rao Bound (CRB) for dtrec of
arrival (DOA) estimation in presence of strict sense naotdar
sources is given. These types of sources are used in nun@ams
tical systems and enhancements to parameter estimatidmdset
exploiting non-circularity have received considerableemtion re-
cently [5, 12, 1, 8]. While closed-form expressions for thRBC
for other types of non-circularity are known [3], the clodedn
expression for the CRB for this data model is not availabléhi
literature to date. After providing the closed-form exgies, some
interesting special cases are discussed. The cases whetrsesise
non-circularity does not provide any gain over generic sewon-
stellations are stated. Moreover, it is demonstrated thdéucertain
conditions the joint CRB may decouple into independent gsout
is also shown that the number of sources which can be estimate
jointly is increased. The analytical results are suppokigdom-
puter simulations which show the Cramér-Rao Bounds aloitly w
the corresponding versions of the Unitary ESPRIT algorithm

1. INTRODUCTION

Estimating the directions of arrival of several planer wewats im-
pinging on an antenna array is a task required for a varieappfi-
cations, including channel modeling, radar, communiceticonar,
and seismology. In recent publications it was shown howtiexjpa-
rameter estimation methods can be improved if the sourcéaelgm
fulfill a condition we term strict sense non-circularityge.the NC
Unitary ESPRIT algorithm discussed in [5], extensions tmdard
ESPRIT given in [12], or improved versions of MUSIC proposed
[1, 8]. In this contribution, the deterministic CramérdBound for
strict sense non-circular sources is discussed. For tigsrdadel, a
closed-form expression for the CRB has not been derived®efo

This paper is organized as follows. First, the data modet-is i
troduced and weak sense as well as strict sense non-citgutar
defined. Then the Cramér-Rao Bound for strict sense naudeir
sources is shown. The main steps of its derivation are @uatlirin
the next part, interesting special cases of the CRB are siscl In
particular, the cases where the restriction to non-circzgarce con-
stellations does not provide any gain are outlined. In thee qaf
two or more sources with small angular separation, the aabie
gains are shown. The fact that the non-circular data moadt fa
itates the estimation of twice the number of sources condptoe
generic source constellations is also highlighted. Fnatbme nu-
merical results demonstrate the Cramér-Rao Bounds aldthgtive
performance of the corresponding versions of the UnitarpPEIS
algorithm [4, 5].

2. DATA MODEL

The following simplified model is used for the descriptiontbé
proposed methods: We assume that the measurements rémesen
superposition ofl specular components resulting from narrowband
sources located in the far field of the antenna array. We cae-th
fore write the measurement matk € CM > containing samples
from the M antenna elements af subsequent time instances as

@

whereA e CM*4 denotes the array steering matrix which consists
of d array steering vectora:,...,aq, S € C¥™N containesN
subsequent symbols from theusers, andV € CM*¥ represents
samples of the additive noise component which are assumkee to
complex Gaussian distributed with zero mean and variarfcand
mutually uncorrelated.

Strict sense non-circularity can be defined through the
non-circularity rate [3] which we denote h¥. For every complex
random variableZ with mean zero, the non-circularity rate is given

by

X=A-S+N,

_ Kz}
E|Z]P}

A random variable for whichf is equal to zero is termed circularly
symmetric. Conversely, the case whete > 0 is referred to as
weak sense non-circularity. It can be shown that for any mezan
complex random variabl& the non-circularity rate fulfill§d| < 1
with equality if and only if the real part and the imaginarytpaf 2
are linearly dependent, i.e, - Re {Z} = ¢2 - Im { Z} for constants
c1,c2 € R. This particular case is referred to as strict sense non-
circularity, i.e., a random variablg is strict sense non-circular if
and only if its non-circularity rat® satisfiedd| = 1.

The Cramér-Rao Bound for weak sense non-circular soua®s h
been derived in [3]. However, this bound does not apply tcesthet
sense case since in the weak sense case the real part ancgthe im
inary part can be treated as different random variabless iBhnot
true in the strict sense case due to the linear dependence.

In the context of direction of arrival estimation, the reganent
for strict sense non-circular sources is that for each sotlme sym-
bols that are received are located on a line in the 1/Q diag@umch
a scenario is, for example, found when the sources transalt r
valued data but may have different transmit delays and fibveréheir
phase angleg;,i =1, 2,...,d at the receiver can be different. The
strict sense non-circularity constraint is incorporatetb ithe data
model in the following fashion

Y
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where now the matrixSy € R*™¥ contains real-valued symbols
from d sources afV time instances and the matnik is constructed
from the phaseg;,i = 1,2, ..., din the following fashion

o)

3. CRAMER-RAO BOUND

¥ = diag { [ejw, g2, (4)

The Cramér-Rao Bound represents a lower limit on the vaeeiai
any unbiased estimator [2, 6] and is therefore a valuablétmo
benchmark the performance of parameter estimation methbds
particular, the Cramér-Rao inequality states that thegamce ma-
trix of any unbiased estimat@r(a:) aiming to compute estimates for
a parameter vectd from an observation vectar satisfies
cov {é(w)} >C (5)
whereCdenotes the corresponding CRB matrix and the inequality
is to be understood in the following sense
A > B <& A — B is positive semi-definite (6)
The CRB matrix is computed from the inverse of the Fisherrinfo
mation matrix (see below).

Closed-form expressions for the Cramér-Rao Bound have bee
derived under various assumptions. The most prominent gmon
these are the deterministic CRB (assuming that the symielara
bitrary complex numbers which are constant but unknowneteh
ceiver) [9] and the stochastic CRB (assuming that the sysmeqire-
sent samples from a complex random process with known @i
matrix) [10]. The latter was also derived for weak sense ciotular
sources in [3]. However, as it has been mentioned aboveCRRB
is not applicable in the strict sense non-circular caseesihere we
cannot assume the real part and the imaginary part of thedgrtto
be independent random variables anymore.

In this paper, we consider the deterministic case, i.e., wdah
the symbols to be constant but unknown random variableshdn t
case of arbitrary (i.e., not neccessarily non-circulamstellations,
the set of parameters that need to be considered is thenlgiven

e The azimuth angle@ € R.

e The real part and the imaginary part of the N symbols
s =vec{S} € C*V.
e The standard deviation of the noise
constituting a total o2V + 1)d + 1 paremters. For the 2-D case
(i.e., joint azimuth and elevation estimation) we addiéithy have

the d elevation anglesx € R?. For simplicity, we present the 1-D
case first. The generalization to the 2-D case is shown ird®eét

The CRB matrix derived under these assumptions is denoted by

C. lts closed-form expression is given by [9]
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In contrast to this approach, for strict sense non-circstarrces the
set of parameters is given by:

e The azimuth angle@ € R.
e Thed - N real-valued symbolsy = vec {So} € R*¥.

e Thed phase anglep € R
e The standard deviation of the noise

As we can see the number of parameters is now equahtdv)d+1.
Under these conditions, it can be shown that the expressiotné
deterministic CRB is given by equation (8) (see below), ehibe
matricesG,,, H,,n = 0,1, 2 are defined as

Go = Re{¥" - A".A.¥}
Hy = Im{¥* A" A ¥}
Gi = Re{¥"-D".A.¥} ©)
H, = Im{¥*.-D". A ¥}
G: = Re{¥"-D".D. ¥}
H, = Im{¥* -D".D.¥}

and the remaining terms are defined in (7). The derivatioB)ofdn
be carried out in analogy to the one presented in [9]. The stajos
are:

e Establishing the probability density function (pdf) of tinea-
surements. Since the parameters are assumed constant, the
measurement samples are complex Gaussian distributed with
mean given by the measurement model.

e Computing the log-likelihood function (LLF) as the
logarithm of the pdf. It is a function depending on the
current realization of the measurement process as well as al

the parameters which are to be estimated.

e From the LLF we can obtain the score-functigrwhich is

a vector containing the partial derivatives of the LLF with
respect to all the parameters. It is important to include not
only the parameters which we would like to estimate but also

the nuisance parameters.

The Fisher information matriy is then given byE{qq” }
where the expectation is carried out with respect to theenois

e Finally, the CRB matrix is given by the inverse.®f Since we
are only interested in the variance of the direction of atriv
angles, we usually only consider the block of the CRB matrix

related to these paramteres.

A full version of the proof is given in [7].

4. GENERALIZATION TO THE 2-D CASE

The deterministic CRB shown in equation (7) can easily beegen
alized to the 2-D case (i.e., joint estimation of the azimaniglesd
and the elevation angles) in the following way [11]
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Here® represents the Kronecker product operator.

In a very similar manner, the CRB for strict sense non-cacul
sources provided in equation (8) is generalized to the 242 dy
replacing

. 11 .
Rso by { 11 } ® Rs,0 (11)
and D by Dap (12)

in equations (8) and (9).
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5. PROPERTIES OF THE CRB In Figure 1 we display the finite value {Cfﬁf‘)} The top graph

Using the closed form expression for the CRB in (8), a numiber o shows a 3d plot otr {Cl(f:fl)} versus bothp and Ap. The two

interesting results can be shown analytically. graphs below display the behavior versusor selected values of

Fqll coherence: If all the d sources are (;qherent, i.e., the Ay and vice versa. We can see thﬁ{cff‘rﬁ)} goes to infinity for
magnitude of the sample cross correlation coefficients éetveach

pair of sources is equal to one, it can be shown &t = C. p — 1andAy — 0. The behavior otr {C(“C)} andtr {C} for

Therefore, in this case restricting the source constetiatio be non- varying Ad is shown in Figure 2. On the left hand side we see the

circular does not provide any gain in terms of the estima#iocu-  trace ofC' ™), on the right hand side the trace@ffor comparison.

racy of any unbiased estimator. The four subplots represent four different valuesinfThe top-left
Equal phases: The same effect is observed when the phase graph represents the uncorrelated case: 0 (leading to perfect

angles of all the sources are equal moduld.e.,o; = ¢ +k; - decoupling forC' ™), whereas the bottom-right graph shows full

fori =1,2,....d, ki € Z, and an arbitraryp. This implies that  coherence. Note that in the case wha@ — 0 the trace ofC )

the symbols received fromll the users are constraineddcsingle reaches a finite value fahy # 0 andp < 1 and the trace ot

line in the 1/Q diagram. In this case there is also no gain ftming never reaches a finite value.

non-circular sources sin@ ™ = C The decoupling result can be generalized to more than two

Single source: Finally, the case where there is only one source goyrces in the following way: Suppose all the sources aretéy

(i.be., d :C 1) can be Iseer? aéRaBspecri]gI;ase.of I:’,Oth cases mentionedncorrelated, such thdks,o is a diagonal matrix. Additionally, the
above. Consequently, the s (which are in this case 3salisfy phase angles must fulfill the conditiop; = ¢! + k; - 7 or

. (nc) __ . i _ '
7= € an e el ooy s ol 2T MUY S SO 7 Lt 2
: provi y gain, which Is, 1 ; pesIng. 7 there are only two different phase anglesy!’! and o2

¢ tlndth?hcas?fwt:e;etrt]here awlso sourcle:?_t |stherfef_fo_redg1ft_eredstlng (corresponding to two distinct lines in the 1/Q diagram). then
0 study the effect of the sample correlation coefficiedefined as 5 ygitionally ) — 2| = 7 /2 then the joint CRB of all the

. % Zi\’:l 50,1(t)s0,2(t) sources decouples into two groups: All the users with phéSere
p= TN RS 5 (13) completely decoupled from the users with phas8 as if each of
\/ﬁ 2 i1 s0.1(t) \/ﬁ 2 i1 50.2(t) the groups was present alone. This results in a significaint ga

compared to the CRB for arbitrary source constellationkefé are
closely spaced sources that belong to different groupse@gain,
this theorem is still approximately true if the strict cotmlis are
not exactly fulfilled (e.g., small correlation).

and the phase separatidny = ¢1 — 2. For the latter, from its
meaning in the complex I/Q diagram it is easily deduced tin& o
the interval betwee\p = 0 andAy = 7/2 is of interest. We can

then prove the following results: . .
. ) Finally, another advantage non-circular sources are alped-
* For two sources approaching in the azimuth plane, we have \qe js in the total number of sources that can be estimaietjo
lim Cc®) = Cl(i[:f))7 where (14) Ag an example, consider a uniform linear array V\Ilstensors_,. In
|61 —02]—0 this cased = M — 1 sources can be estimated jointly using ar-
¢ {C<“°)} cooe h<landAv >0 bitrary (non neccessarily strict sense non-circular) seeonstella-

" iim o= p v =5 tions. Now it can be shown that faf"® the number of sources
can be as large ab= 2(M — 1) as long anoneof the sources are
coherent (i.e., the sample correlation coefficightsall have a mag-
nitude less than one far£ ;) and the phase angles are all different
modulo w: mod(p;, 7) # mod(p;,m) Vi # j € {1,2,...,d}
(i.e., all the lines in the 1/Q diagram are distinct). Thiszso been

wheretr {.} denotes the trace of a matrix. In other words, the
CRB C™° reaches a finite value if the sources are not fully
coherent and have a different phase. It should be noted that
this results in a significant gain over the CRBsince

o li;n‘ tr{C} — oo Vp, VAp (15) observed for the NC Unitary ESPRIT algorithm [5].
1—02|—0
e Ifwe havep = 0 and Ay = /2, i.e., perfectly uncorrelated 6. SIMULATION RESULTS

sources with maximum phase separation then the joint CRB

of the two sources is a diagonal matrix containing the single  These features can also be demonstrated through compuniglasi

source CRBs for each of the sources on the diagonal. In othertjons. Here, we compare the Unitary ESPRIT algorithm [4] tred

words, the two sources are completely decoupled, as if eachcorresponding deterministic CRB from (7) with the NC Unjt&S-

of them was present alone. While the conditions for this case pRr|T algorithm [5] and the CRB for strict sense non-circsiaurces

seem rather restrictive, it should be noted that this stitlp- from (8). As an example, consider Figure 3 where the sejparafi

proximately true if the conditions are not exactly met (i.e. 4 — 2 uncorrelated sources is varied for &h = 8 sensor uniform

gmall residual correlation or almost maximum phase separa-|inear array (ULA) usingV = 10 subsequent snapshots. The SNR

tion). is set to 30 dB. We can clearly see how exploiting the striosee
1The behavior of the CRB is symmetric e since users can be ex- non-circularity condition leads to a root mean square egion er-

changed and--periodic since real-valued data streams can be multiied ~ ror and a CRB that is constant as the two sources approach.
a factor of -1. In Figure 4 the number of sensors is changed to 5 and the number
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of sources is varied to demonstrate that the limit on the rerolb
resolvable sources is doubled framh — 1 to 2(M — 1). The phase
angles are drawn randomly according to a uniform distrdsuin

[0, 27], the azimuth angles are set deterministically in the irtlerv

[20°,160°] with a fixed separation ¢f0°.

7. CONCLUSIONS

In this contribution, the Cramér-Rao Bound for strict sem®n-
circular sources is discussed. First, a closed form exjoreder

the CRB for this data model is given. Then its behavior in some

interesting special cases is studied. In particular, ieidnstrated
that in the case where two sources approach the same positiien
nite value for the CRB is reached. This implies a significaainhg
compared to arbitrary (i.e., not necessarily non-cirgudaurce con-
stellations where the CRB approaches infinity. The scesavitere
the non-circular sources do not lead to any improvementrimgef

—<4— UE
—— NCUE
—=— CRB
—e— CRBnNc

RMSE [deg]

107 i i i
107 10" 10° 10

Separation [deg]

Fig. 3. Root mean square estimation error for Unitary ESPRIT (UE)
and NC Unitary ESPRIT (NCUE) together with the correspogdin

CRBs versus the separationdf 2 uncorrelated sources.
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Fig. 4. Comparison of Unitary ESPRIT (UE) and NC Unitary ES-

PRIT (NCUE) versus the number of soureefor a 5 sensor ULA.
The number of resolvable sources is doubled.

the CRB are also outlined. The results are supported by ctampu
simulations where the CRBs are compared with the correspgnd
versions of the Unitary ESPRIT algorithm.
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