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ABSTRACT

Bidirectional communication between two nodes is made

possible by a half-duplex relay node in a multiple access and

broadcast phase. We optimize the time-division between the

two phases and give a complete characterization of the con-

vex achievable rate region. This allows us to derive a relay

selection criteria and to present a throughput optimal rate al-

location policy for a cross-layer design. Furthermore, if the

relay additionally multicasts a common message, we can im-

prove the resource utilization by joint processing of two rout-

ing tasks.

1. INTRODUCTION

In wireless communication scenarios where the direct link

does not have the desired quality, e.g. due to shadowing or

distance, cooperative protocols which realize range extension

seem to be a possible solution. Since it is practically difficult

to isolate at one node a simultaneously received and trans-

mitted signal using the same frequency sufficiently, we as-

sume half-duplex relay nodes. Because of this, most coopera-

tive communication protocols allocate additional resources in

time or frequency, [1], [2] among others, and therefore suffer

from an inherent loss in spectral efficiency.

The spectral loss can be reduced in a two phase bidirec-

tional relay communication where one node acts as a relay

and enables bidirectional communication between two other

nodes. In the first phase, the two nodes transmit their mes-

sages to the relay node, which decodes the messages. In the

second phase the relay broadcasts back a re-encoded compo-

sition of both messages. The knowledge of the first phase al-

lows the receiving nodes to perform interference cancellation

before decoding so that it is like an interference-free trans-

mission effectively [3], [4]. For that reason, bidirectional re-

lay communication circumvents the inherent spectral loss of

unidirectional cooperative protocols. Conceptually, there is a

close relationship to bidirectional relaying protocols based on

the network coding principle where the relay node performs

an XOR operation on the decoded bit streams [5] but it as-

sumes equal channel qualities and leaves channel coding out

of considerations.

In [3] and [4] bidirectional relaying with equal time di-

vision is considered. In this work, we optimize the time di-

vision and therefore achieve a larger bidirectional achievable

rate region, which is studied in section 2. This allows us to

derive a relay selection criteria which decides for the relay

node which maximizes the weighted rate sum for any rate

pair on the boundary in section 3. In a scenario with N re-

lay nodes and iid Rayleigh fading relay selection realizes the

same multi-user space diversity order O(log(log(N))) as dis-

tributed beamforming [6]. In section 4 we add relay com-

munication on the time-division optimized bidirectional re-

laying protocol. Therefore, the relay node piggybacks on

the bidirectional broadcast messages an own multicast mes-

sage. It shows that it is optimal for node 1 and 2 to de-

code the relay message first as it is for equal time-division

[4], [7]. Thereby, the joint processing provides a rate trade-

off which allows an optimal resource utilization, i.e we im-

prove the efficiency by converging two routing schemes. Fi-

nally, the complete characterization of the time-division opti-

mal bidirectional achievable rate region in section 2 allows us

to present a throughput optimal rate allocation policy in sec-

tion 5, which we discussed for the equal time-division case in

[8]. Both are adapted from the maximum differential backlog

algorithm presented in the landmark paper [9]. Further, the

stability regions of policies can be proved using the well de-

veloped theory of drift analysis using a quadratic Lyapunov

function on the buffer levels [10]. Since our stability analysis

is adapted from the cross-layer design for a satellite broadcast

scenario [11], we keep our stability discussion short. 1

2. ACHIEVABLE RATE REGION

We consider a three node network where two phase bidirec-

tional communication is realized between node 1 and 2 by

a decode-and-forward half-duplex relay node. Thereby, let

h1 and h2 denote the flat fading channel gain of the recip-

rocal channel between the relay node and node 1 and 2. We

have an individual transmit power constraint Pk for each node

k ∈ {1, 2, R}. Furthermore, we assume independent additive

1Notation: Bold and calligraphic letters denote vectors and sets respec-

tively; intA specifies the interior of set A; R+ denotes the set of non-

negative real numbers; [a, b] and (a, b) specify the closed and open in-

terval from a to b in R; lhs := rhs assigns to lhs the value of rhs;

[·]+ = max(0, ·); 1 designate a vector with ones; E{·} denotes the ex-

pectation value; any log is to the base two; we regard the discrete stochastic

process X as an indexed collection of random variables X(n), which takes

realization x of state space X .



white complex Gaussian noise Nk ∼ CN (0, σ2) at each re-

ceiver k ∈ {1, 2, R}. Therewith, we define the signal-to-noise

ratios γk = Pk/σ2 for each receiver k ∈ {1, 2, R}. Finally,

we assume that all nodes are perfectly synchronized and each

node knows the channel states, codebooks, and power alloca-

tions necessary for decoding.

Since the communication is performed in two phases, let

α ∈ [0, 1] denote the fraction of time in the multiple access

(MAC) phase and 1 − α the fraction of time in the broadcast

(BC) phase. In the following subsections, we first present the

achievable rate regions for the MAC and BC phase separately.

Then we look at the achievable rate region of bidirectional re-

laying using interference cancellation with the optimal time-

division between MAC and BC phase.

2.1. Achievable Rate Region of MAC phase

In the first phase, node 1 transmits the message m1 for node 2

with rate R1 and node 2 transmits the message m2 for node 1

with rate R2 to the relay node. The encoding and decoding is

exactly like the classical discrete memoryless Gaussian MAC

channel. If the rate tuple R = [R1, R2] ∈ R2
+ of node 1 and

2 is within the achievable rate region

RMAC =
{

R : R1 ≤ R−→
1R

, R2 ≤ R−→
2R

, R1 + R2 ≤ RΣ

}

with R−→
1R

= log[1 + γ1|h1|2], R−→
2R

= log[1 + γ2|h2|2], and

RΣ = log[1 + γ1|h1|
2 + γ2|h2|

2], it is assumed that the relay

node decodes the messages m1 and m2 perfectly.

Since RMAC is a pentagon, it can be completely described

by five vertices. Thereby, the vertices where the individual

rate constraints intersect with the sum-rate constraint, ν1Σ =
[R−→

1R
, RΣ − R−→

1R
], and νΣ2 = [RΣ − R−→

2R
, R−→

2R
], are most

interesting for the combinatoric.

2.2. Achievable Rate Region of BC phase

In the succeeding phase, the relay forwards the previously re-

ceived messages m1 to node 2 and message m2 to node 1.

Since we have Gaussian channels, the relay uses independent

Gaussian codebooks to encode the messages and transmits the

superposition of both codewords. Thereby, let β1 and β2 de-

note the proportion of relay transmit power spend for forward-

ing message m1 and m2 respectively. Obviously, we require

[β1, β2] ∈ B = {[β1, β2] ∈ [0, 1] × [0, 1] : β1 + β2 ≤ 1} to

satisfy the relay transmit power constraint. Since the message

m1 and m2 originate from node 1 and 2, each node knows one

message. This a priori knowledge improves the decoding ca-

pability of the unknown message at each node. For a Gaussian

channel this principle is known as interference cancellation.

Therefore, each node subtracts the interference caused by the

codeword of its own message and achieves an interference-

free reception. For that reason, we can achieve an error-free

transmission if the rate tuple R = [R1, R2] ∈ R2
+ is within

the achievable rate region

RBC =
{

R : R1 ≤ R−→
R2

(β1), R2 ≤ R−→
R1

(β2), [β1, β2] ∈ B
}

with R−→
R2

(β1) = log[1 + γRβ1|h2|
2] and R−→

R1
(β2) = log[1 +

γRβ2|h1|
2]. We emphasize that we achieve a larger rate region

than the degraded broadcast channel.

2.3. Achievable Rate Region of Bidirectional Relaying

Since we use the MAC and BC phase for fraction of time

only, we have to scale the achievable rate pairs according the

time-division. This means that for a time-division parameter

α ∈ [0, 1], we can achieve rate pairs R within the rate re-

gions αRMAC in the MAC phase and (1 − α)RBC in the BC

phase. Since we assume that no messages will be stored at

the relay node, each message received in the MAC phase has

to be forwarded in the BC phase immediately. Therefore, for

a successful bidirectional relay transmission of the messages

m1 with rate R1 and message m2 with rate R2 the rate pair

R = [R1, R2] has to be within αRMAC and (1 − α)RBC si-

multaneously. This means that for given time-division param-

eter α ∈ [0, 1] the achievable rate region of the bidirectional

relaying is given by the intersection

RBIR(α) = αRMAC ∩ (1 − α)RBC.

Since this applies for any time-division parameter α the

achievable rate region of the bidirectional relaying is given

by the union over all possible time-division parameters,

RBIR =
⋃

α∈[0,1]

RBIR(α). (1)

In the following, we will characterize the boundary of the

bidirectional achievable rate region RBIR. First, we charac-

terize the optimal time-division and relay power distribution

for a fixed operating rate pair in the MAC phase. Then, this

will be used to derive an equivalent description of RBIR.

Lemma 1 For a fixed rate pair [RM
1 , RM

2 ] ∈ RMAC the fea-

sible set of time-division parameters where an operating at

the rate pair [RM
1 , RM

2 ] in the MAC phase is possible is given

by A =
{

α ∈ [0, 1] : αRM
1 ≤ (1 − α)R−→

2R
(β1),

αRM
2 ≤ (1 − α)R−→

1R
(β2), with [β1, β2] ∈ B

}

. For a time-

division parameter α ∈ A we achieve the bidirectional rate

pair [R1, R2] = α[RM
1 , RM

2 ]. Then the optimal time-division

parameter α⋆ = max
α∈A

α is uniquely characterized by the

equations

α⋆RM
1 = (1 − α⋆)R−→

R2
(β⋆

1), (2a)

α⋆RM
2 = (1 − α⋆)R−→

R1
(β⋆

2), (2b)

which also characterize the optimal relay power distribution

[β⋆
1 , β⋆

2 ] ∈ B with β⋆
1 + β⋆

2 = 1.

Sketch of Proof: It is clear from the construction of A
that for any α ∈ A we can achieve [R1, R2] = α[RM

1 , RM
2 ].

Therefore, the largest α maximizes component-wise the bidi-

rectional rate pair. Then it can be shown by contradiction that

the optimal coefficients α⋆ and β⋆
1 and β⋆

2 are defined by the

equations (2a) and (2b). �



Since the largest bidirectional rates are achieved by rate

pairs on the boundary of the MAC region, we can find an

equivalent characterization of RBIR by transforming the sum

and individual rate constraints of the MAC region.

Theorem 1 The bidirectional achievable rate region RBIR is

given by

RBIR = R1 ∩R2 ∩RΣ (3)

with rate regions

R1 =
{

[R1, R2] ∈ R2
+ : there exists β ∈ [0, 1] with

R1 ≤ R11(β) := (1 − α⋆
1(β))R−→

R2
(β),

R2 ≤ R12(β) := (1 − α⋆
1(β))R−→

R1
(1 − β)

}

,

(4a)

R2 =
{

[R1, R2] ∈ R2
+ : there exists β ∈ [0, 1] with

R1 ≤ R21(β) := (1 − α⋆
2(β))R−→

R2
(β),

R2 ≤ R22(β) := (1 − α⋆
2(β))R−→

R1
(1 − β)

}

,

(4b)

RΣ =
{

[R1, R2] ∈ R2
+ : there exists β ∈ [0, 1] with

R1 ≤ RΣ1(β) := (1 − α⋆
Σ(β))R−→

R2
(β),

R2 ≤ RΣ2(β) := (1 − α⋆
Σ(β))R−→

R1
(1 − β)

}

,

(4c)

with optimal time-division α⋆
1(β) =

R−→

R2
(β)

R−→

1R
+R−→

R2
(β) , α⋆

2(β) =

R−→

R1
(1−β)

R−→

2R
+R−→

R1
(1−β) , and α⋆

Σ(β) =
R−→

R1
(1−β)+R−→

R2
(β)

RΣ+R−→

R1
(1−β)+R−→

R2
(β) .

Sketch of Proof: R1, R2, and RΣ follow from the trans-

formation of the rate pairs [RM
1 , RM

2 ] ∈ R2
+ satisfying the

MAC individual rate constraints RM
1 ≤ R−→

1R
, RM

2 ≤ R−→
2R

and sum-rate constraint RM
1 + RM

2 ≤ RΣ using Lemma 1.

Thereby, we have β⋆
1 = β and β⋆

2 = 1 − β. �

In accordance to the theorem, the functions R1(β) :=
[R11(β), R12(β)], R2(β) := [R21(β), R22(β)], and

RΣ(β) := [RΣ1(β), RΣ2(β)] are parametrizations of the

boundaries with β ∈ [0, 1]. From the following properties

of the boundaries we conclude next that R1, R2, and RΣ are

convex, and RBIR accordingly.

Corollary 1 The angle of the normal vector for any bound-

ary rate pair of R1, R2, RΣ is given by the strictly monotone

decreasing functions ϕ1(β) = arctan
(

− dR11(β)
dβ

/dR12(β)
dβ

)

,

ϕ2(β) = arctan
(

− dR21(β)
dβ

/dR22(β)
dβ

)

, and ϕΣ(β) =

arctan
(

− dRΣ1(β)
dβ

/dRΣ2(β)
dβ

)

with β ∈ [0, 1] respectively.

It follows that RBIR is convex.

Sketch of Proof: The monotony can be proved by inspec-

tion of the derivation of ϕ1, ϕ2, and ϕΣ. Then the convexity

follows with the monotone behavior of R11, R12, R21, R22,

RΣ1(β), and RΣ2. �

Since ϕ1, ϕ2, and ϕΣ are continuous and strictly mono-

tone for each function, there exists an inverse function ϕ−1
1 :

[ϕ1(1), ϕ1(0)] → [0, 1], ϕ−1
2 : [ϕ2(1), ϕ2(0)] → [0, 1], and

ϕ−1
Σ : [ϕΣ(1), ϕΣ(0)] → [0, 1] respectively. Unfortunately,

ϕ−1
1 , ϕ−2

2 , and ϕ−1
Σ have no explicit representation.
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Fig. 1. Optimized time-division achievable rate regions.

In Figure 1 we illustrate the achievable rate regions RΣ

and RBIR for an example scenario. For a complete character-

ization of the boundary of RBIR we need to understand the

combinatoric of the intersection (3). Next, we see that also

the combinatoric from the MAC region transforms to RBIR.

Proposition 1 For β ∈ [0, 1] there is exactly one intersection

rate pair between

1. R1(β) and RΣ(β) at β1Σ with RΣ(β1Σ) ∈ RBIR,

which is the transformed vertex ν1Σ ∈ RMAC;

2. R2(β) and RΣ(β) at βΣ2 with RΣ(βΣ2) ∈ RBIR,

which is the transformed vertex νΣ2 ∈ RMAC; and

3. R1(β) and R2(β) at β12 with R1(β12) /∈ RBIR.

Furthermore, we have the maximal unidirectional rates

R⋆
1 := max

R∈RBIR

R1 = R11(1) R⋆
2 := max

R∈RBIR

R2 = R22(0)

Sketch of Proof: Simple calculation using Lemma 1

proves the combinatoric. For the maximal unidirectional rate

we additionally need the monotone behavior of the compo-

nents of the parametrized boundaries. �

The next corollary about the boundary of RBIR is a direct

consequence from the combinatoric.

Corollary 2 The boundary of RBIR is characterized by the

section-wise defined rate pair function RBIR : [0, 1] → R2
+,

RBIR : β 7→











R2(β), for βΣ2 ≥ β ≥ 0

RΣ(β), for β1Σ > β > βΣ2

R1(β), for 1 ≥ β ≥ β1Σ.

(5)

We are now ready to characterize the rate pair where the

weighted rate sum is maximized in closed form. Therefore,

in the next theorem we make use of all previously introduced

functions and characteristic parameters.

Theorem 2 We define the function ξ : R2
+ → [0, π/2], q 7→

arctan(q2/q1) with ξ([0, q2]) = π/2, then for a given weight

vector q = [q1, q2] ∈ R2
+ the rate pair where the weighted

rate sum is maximized is given



R⋆(q) = arg max
R∈RBIR

q1R1 + q2R2 = RBIR(β⋆(q)) (6)

with the optimal power distribution factor, β⋆(q),

β⋆ :R2
+ → [0, 1],

q 7→















































1, for ξ(q) < ϕ1(1),

ϕ−1
1 (ξ(q)), for ϕ1(1) ≤ ξ(q) ≤ ϕ1(β1Σ),

β1Σ, for ϕ1(β1Σ) < ξ(q) < ϕΣ(β1Σ),

ϕ−1
Σ (ξ(q)), for ϕΣ(β1Σ) ≤ ξ(q) ≤ ϕΣ(βΣ2),

βΣ2, for ϕΣ(βΣ2) < ξ(q) < ϕ2(βΣ2),

ϕ−1
2 (ξ(q)), for ϕ2(βΣ2) ≤ ξ(q) ≤ ϕ2(0),

0, for ϕ2(0) < ξ(q).

Sketch of Proof: For a convex set the weighted rate sum

is attained at the boundary rate pair where the direction of

the normal vector is equal the direction of the weight vector.

Then the result follows with the previous characterization of

the boundary and angle of normal vector. �

3. RELAY SELECTION

In this section we consider a scenario where node 1 and

2 with arbitrary γ1 and γ2 can get support by one out of

N relay nodes with individual relay transmit powers con-

straints (respectively γR,n) and channel gains h1,n and h2,n,

n ∈ {1, 2, . . . , N}. Accordingly, let R−→
1R,n

, R−→
2R,n

, R−→
R1,n

,

R−→
R2,n

, and RBIR,n denote the rates R−→
1R

, R−→
2R

, R−→
R1

, R−→
R2

,

and the rate region RBIR using the n-th relay node.

3.1. Relay Selection Criteria

Since some rate pairs can be achieved with certain channel

states respectively relay nodes only, for reasonable relay se-

lection criteria we have to look at the whole two dimensional

rate region. This implies that there need not be one relay node

which is the best for the whole two dimensional achievable

rate region. Accordingly, we can achieve the union

RRS :=
N
⋃

n=1
RBIR,n

by selecting for a certain rate pair the corresponding relay

node that achieves this rate pair. Since a union of convex sets

need not be convex, the rate region using relay selection RRS

need not be convex. Convexity is obtained if we addition-

ally allow time-sharing between the usage of the relay nodes.

Therewith, we achieve the rate region

RRS,TS := ConvexHull{RRS}.

The boundary of RRS,TS can be characterized by

the rate pairs with the weighted rate sum maximum

arg maxR∈RRS
RqT for weight vectors q = [q1, q2] ∈ R2.

But this is nothing else than doing relay selection for any

boundary rate pair individually, what allows us to charac-

terize the relay selection criteria in a single formula: For a

given weight vector q let R⋆
n(q) denote the rate pair with the
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Fig. 2. Relay selection with time-sharing.

weighted rate sum maximum of the n-th relay node accord-

ing Theorem 2. Then for this weight vector q it is optimal to

select the relay node according to

η(q) := arg max
n∈{1,2,...,N}

R⋆
n(q)qT . (7)

Accordingly, we define the rate pair R⋆
RS(q) := R⋆

η(q)(q).
If there are multiple solutions, we have to apply time-sharing

between the relay nodes with the corresponding rate pairs to

achieve all rate pairs on the boundary of RRS,TS.

Figure 2 (a) illustrates the rate region using relay selection

with time-sharing for a scenario with N = 3 relay nodes.

Thereby notice that some rate tuples can be achieved by time-

sharing between two rate pairs of different relay nodes only.

3.2. Scaling Law of Ergodic Rate Region

We now consider a scenario with N relay nodes in the pres-

ence of time-variant fading. Therefore, we assume identical

and independent ergodic block-fading processes {hk,n[m]}m,

k = 1, 2, n = 1, . . . , N , with a block length so that the error-

free coding assumption is reasonable.

As before, the ergodic rate region is characterized by the

rate pairs on its boundary, i.e. by the ergodic rate pairs with

the maximal weighted rate sums

R⋆
RS(q) = E{R⋆

RS(q)}.

Again the ergodic rate region is given by the convex hull,

RRS,TS = ConvexHull{R⋆
RS(q) : q = [q1, q2] ∈ R2}.

In Figure 2 (b) we illustrate the enlargement of the ergodic

rate region due to relay selection. Thereby, we assume equal

relay transmit powers. It shows that the diversity gain de-

creases with increasing number of relays. In the following, we

present the scaling law of this growth. For the derivation we

will find bounds for the rate sum of any ergodic rate pair on

the boundary using the maximal unidirectional ergodic rates.

Therefore, let R⋆
k,n denote the k-th maximal unidirectional



rate using the n-th relay node, cf. Proposition 1. Then the

maximal unidirectional rate using relay selection is given by

R⋆
k,RS = max

n∈{1,2,...,N}
R⋆

k,n, k = 1, 2.

First, we present bounds for the maxi-

mal unidirectional rates. Therefore, we define

R̂⋆
1,n = min{R−→

1R,n
, R−→

2R,n
(1)} = log(1 + min{

γ1|h1,n|
2, γR|h2,n|

2}) and R̂⋆
2,n = min{R−→

2R,n
, R−→

1R,n
(0)}

= log(1+min{γ2|h2,n|
2, γR|h1,n|

2}). From the inequalities
1
2 min{x, y} ≤ xy

x+y ≤ min{x, y} for x, y ≥ 0 we have

1
2 R̂⋆

k,n ≤ R⋆
k,n ≤ R̂⋆

k,n. Accordingly, we get 1
2 R̂⋆

k,RS ≤

R⋆
k,RS ≤ R̂⋆

k,RS with R̂⋆
k,RS = max

n∈{1,2,...,N}
R̂⋆

k,n for k = 1, 2.

The same inequalities hold for the maximal unidirectional

ergodic rates 1
2 R̂⋆

k,RS ≤ R⋆
k,RS ≤ R̂⋆

k,RS with R⋆
k,RS =E{R⋆

k,RS} and R̂⋆
k,RS = E{R̂⋆

k,RS} for k = 1, 2. Since

RRS,TS is convex and since the maximum of the sum is less

than the sum of maximums, we have the inequalities

1
2 min{R̂⋆

1,RS, R̂⋆
2,RS} ≤ min{R⋆

1,RS, R⋆
2,RS} ≤

∣

∣

∣

∣R⋆(q)
∣

∣

∣

∣

1
≤

2
∑

k=1

R⋆
k,RS ≤

2
∑

k=1

R̂⋆
k,RS

(8)

for any weight vectors q ∈ R2
+ \ {0}. Thus, we see that from

a scaling law for R̂⋆
k,RS we can upper and lower bound the

growth of the sum-rate of any boundary rate pair of RRS,TS.

Accordingly, in the next theorem we present a tight asymptote

on R̂⋆
k,RS in an iid Rayleigh fading scenario.

Theorem 3 Let hk,n ∼ CN (0, σ2) pairwise independent dis-

tributed, γR,n = γR, and λk = γk+γR

σ2γkγR
for all k = 1, 2 and

n = 1, 2, . . . , N , then we can bound R̂⋆
k,RS as follows

log
(

1 + 1
λk

ln(N
a )

)

1−e−a

2 ≤ R̂⋆
k,RS ≤

log
(

1 + 1
λk

ln(N
b )

)

e−b +b
2 + b

2 log
(

1 + 1

λk+ln(
N
b )

)

for any k = 1, 2 and a, b ∈ (0, N). For the case N → ∞ the

asymptotic upper and lower bound meet if a → ∞ and b → 0.

Therefore, 1
2 log(ln(N)) is a tight asymptote on R̂⋆

k,RS.

Sketch of Proof: First, we see that the random variables

Zn = min{a|h1,n|2, b|h2,n|2} are exponential distributed

with mean ( 1
aσ2

1,n

+ 1
bσ2

2,n

)−1. Then the cumulative distri-

bution function of Z = maxn Zn is given by the prod-

uct FZ(z) =
∏

n FZn
(z), with density function fz(z) =

Nλk e−λkz(1 − e−λkz)N−1.

With substitution of τ = 1−e−λkz we haveE{R̂⋆
k,RS} =

´ 1

0
N
2 log

(

1−1/λk ln(1− τ)
)

τN−1 dτ ≥
´ 1

1− a
N

. . . dτ since

the integrand is positive. The lower bound can be found us-

ing that the integrand is monotone increasing in τ and the

inequality e−z < (1 + z/y)−y for z = wy
w+y with w, y > 0.

Accordingly, we have E{R̂⋆
k,RS} ≤

´ x

0
τN−1 dτ

ln(1−1/λ ln(1−x))
2 ln(2) N + N

2 ln(2)

´ 1

x
ln

(

1 − 1/λk ln(1 − τ)
)

dτ

with x = 1 − b/N . We get the upper bound after solving

both integrals and using the inequalities (1 − b/N)N ≤ e−b

and eξ E1(ξ) < ln(1 + 1/ξ) with λk + ln(N/b) = ξ.

Since lim inf
N→∞

E{R̂⋆
k,RS

}
1

2
log(ln(N))

≥ 1 − e−a and lim sup
N→∞E{R̂⋆

k,RS
}

1

2
log(ln(N))

≤ e−b +b we have an asymptotic lower and up-

per bound, which meet for a → ∞ and b → 0. �

It is interesting that the asymptote is independent of λ and

therefore independent of the channel gain variance σ2, power

restrictions γR, and γ1 or γ2. Finally, the scaling law is a

direct consequence of the theorem and the inequalities (8).

Corollary 3 For the iid Rayleigh fading scenario with N re-

lay nodes and γR,n = γR the sum of any ergodic rate pair on

the boundary of the ergodic rate region R⋆
RS,TS grows with

O(log(log(N))). In more detail, we have

lim inf
N→∞

||R⋆(q)||1
log(ln(N)) ≥ 1

2 , lim sup
N→∞

||R⋆(q)||1
log(ln(N)) ≤ 2.

4. PIGGYBACK A COMMON RELAY MESSAGE

We now consider the case where the relay node wants to trans-

mit a common message to node one and two, this means that

both nodes should decode the relay message. Therefore, in

this section we consider again a scenario with one relay node

only. The relay node encodes the additional relay message

mR with rate RR using a Gaussian codebook with variance

one. Let βR denote the proportion of relay transmit power

spend for the codeword of message mR. The relay superim-

poses the scaled codeword on the transmit signal of the bidi-

rectional broadcast. Now, the relay transmit power constraint

requires β1 + β2 + βR ≤ 1.

Since node 1 and 2 receive the codeword of their own

message as interference, before decoding the unknown mes-

sages node 1 and 2 subtract the interference caused by their

own message. In [4] we proved the optimal decoding order

of the unknown messages in the case of equal time division.

The proof carries over to the optimal time-devision case con-

sidered here.

Theorem 4 The maximal achievable additional relay rate for

a desired bidirectional rate pair [R1, R2] ∈ RBIR is achieved

if in the MAC phase node 1 and 2 transmit messages with a

rate pair [RM
1 , RM

2 ] on the boundary of RMAC with R1

R2
=

RM
1

RM
2

and if in the BC phase node 1 and 2 decode the additional

relay message first. Then we have the optimal time division

parameter α⋆ = R1

RM
1

= R2

RM
2

and the additional relay rate

RR(R1, R2) = min
{

RR@1(R1, R2), RR@2(R1, R2)
}

, (9)

with achievable additional relay rates at node 1 and 2

RR@1(R1, R2) = (1 − α⋆) log
[

1 + βR|h1|
2γR

1+β2|h1|2γR

]

, (10a)

RR@2(R1, R2) = (1 − α⋆) log
[

1 + βR|h2|
2γR

1+β1|h2|2γR

]

, (10b)
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Fig. 3. Piggyback a common relay message.

with β1 = 2
R1

1−α⋆ −1
|h2|2γR

, β2 = 2
R2

1−α⋆ −1
|h1|2γR

, and βR = 1− β1 − β2.

Sketch of Proof: The additional relay rate increases with

a longer BC phase. Therefore, for a desired bidirectional relay

rate pair [R1, R2] ∈ RBIR we have the longest BC phase, i.e.

smallest α, if the rate pair [RM
1 , RM

2 ] ∈ RMAC of the MAC

phase is on the boundary of RMAC while it has the same ratio

than the desired bidirectional rate pair, c.f. Lemma 1. With

the optimal α⋆ the proof from [4] for the equal time-division

can be adapted to the optimal time-division case. �

Since it is optimal for any desired bidirectional rate tuple

that the relay message is decoded first, then its interference is

canceled, and in the end the bidirectional messages is decoded

without any interference of the relay message, we say that the

common relay message is piggybacked on the bidirectional

relay communication. Effectively, this means that we have a

bidirectional relay communication with reduced relay power.

Accordingly, let γB = (1 − βR)γR and γP = βRγR denote

the relay signal-to-noise ratios of the bidirectional relay and

piggyback communication respectively. With this we normal-

ize the optimal relay power distribution factors: For a given

βR we define β = β1

1−βR
= 1 − β2

1−βR
. Therewith, we can

rewrite the additional relay rate of Theorem 4 as follows

RR = (1 − α) log(1 + min{ |h1|
2γP

1+(1−β)|h1|2γB
, |h2|

2γP

1+β|h2|2γB
}).

The terms
|h1|

2γP

1+(1−β)|h1|2γB
and

|h2|
2γP

1+β|h2|2γB
are strictly in-

creasing and decreasing for β ∈ [0, 1]. We have equality, and

therefore maximize the min term, at the relay power distribu-

tion factor
β⋆ = 1

2 − 1
2γB

|h1|
2−|h2|

2

|h1|2|h2|2
.

Accordingly, for β ≤ β⋆ and β ≥ β⋆ we have RR =
RR@1 and RR = RR@2 for fixed α. But since the optimal

time devision α⋆ depends on β as well, the power distribu-

tion β⋆ maximizes the additional relay rate for a fixed βR

only if β⋆ ∈ [βΣ2, β1Σ]. This follows from the fact that

RR@1 with α = α⋆
2 and RR@2 with α = α⋆

1 are strictly

increasing and decreasing as well as α⋆
Σ is strictly increas-

ing and decreasing with β for β < β⋆ and β > β⋆ re-

spectively, i.e. β⋆ maximizes αΣ and therefore RR if β⋆ ∈
[βΣ2, β1Σ] as well. If β⋆ ∈ [0, βΣ2] we achieve the largest

additional relay rate with the power distribution that maxi-

mizes (1−α2(β)) log(1+ |h2|
2γP

1+βγB|h2|2
) in the range [β⋆, βΣ2].

Accordingly, if β⋆ ∈ [βΣ2, 1] we achieve the largest addi-

tional relay rate with the power distribution that maximizes

(1 − α1(β)) log(1 + |h1|
2γP

1+(1−β)γB|h1|2
) in the range [β1Σ, β⋆].

In Figure 3 we depicted the achievable rate regions for

uniformly increasing βR. The dotted lines denote the in-

tersections of the boundaries R1 and R2 with RΣ and are

given by the linear functions R2(R1) =
RΣ−R−→

1R

R−→

1R

R1 and

R2(R1) =
R−→

2R

RΣ−R−→

2R

R1 respectively. The comparison with a

simple TDMA protocol with five exclusive time slots of equal

length for each transmission shows the improved resource uti-

lization due to joint processing of two routing tasks.

5. CROSS-LAYER DESIGN

For the cross-layer design we assume a queuing model where

the service rate provided from the physical layer is modeled

by the previous information theoretic bidirectional rate pair.

Thereby, a centralized controller chooses the service rates ac-

cording a rate allocation policy.

In this section we assume a block-fading channel model,

where the flat-fading channel gains are assumed to be constant

during a time period T . This allows us to consider a time-

slotted system model where the n-th slot denotes the time pe-

riod [(n − 1)T, nT ]. Therefore, let h(n) = [h1(n), h2(n)]
denote the channel processes with finite state space H =
H1 ×H2 and steady-state distribution πh = πh1

πh2
.

We consider the scenario depicted in Figure 4, where at

node 1 and 2 the packets arrive with independent negative

exponential distributed inter-arrival times and average arrival

rates [λ1, λ2] = λ. This means that we have independent

homogeneous Poisson arrival processes [A1(n), A2(n)] =
A(n). Furthermore, we assume independent random packet

length Zi, i = 1, 2, with finite first and second moments at

each node. Thus let Bi(n), i = 1, 2, denote the processes

of number of bits arriving in time-slot n at node 1 and 2.

Then the bit arrival rate at node i is given by ρi = λiE{Zi},

i = 1, 2, in [bits/s]. Note that we haveE{B2
i } < ∞, i = 1, 2,

due to the previous assumptions. The packets are stored in

queuing buffers with infinite size until they are served.

We observe the queue length at the end of each time-slot,

therefore let Q(n) = [Q1(n), Q2(n)] represent the process of

unfinished work in the queues after the n-th time-slot. By ad-

justing the optimal time-division and relay power distribution

the controller decides after each time-slot for the service rates

[R1(n + 1), R2(n + 1)] ∈ RBIR(h(n)) of the next time-slot
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Fig. 4. Service rate allocation by a centralized controller

based on the current channel and queue states in a bidirec-

tional relaying scenario with Poisson arrival processes and

queuing buffer of infinite size at two nodes.

based on the current queue state Q(n) and channel state h(n)
only. Hence, the slot-to-slot dynamics of the queue backlogs

are given by the equation

Qi(n) = [Qi(n − 1) − Ri(n)T ]+ + Bi(n), i = 1, 2.

Since the arrival processes are memoryless and the service

rates depend on the current channel and queue state only, the

process Q(n) has Markov property.

In the following, we are interested in a maximum through-

put policy. The throughput is defined as the mean number

of bits transmitted in a unit of time and is obviously upper

bounded by the mean service rates. Therefore, let RBIR de-

note the ergodic bidirectional rate region. Since RBIR(h) is

convex for any channel state h ∈ H also the ergodic rate re-

gion RBIR is convex. This means that the ergodic rate pair on

the boundary with normal vector q is given by

R⋆(q) =
∑

h∈H

πh(h) arg max
R∈RBIR(h)

q1R1 + q2R2,

With this we get a characterization of the bidirectional ergodic

rate region as follows

RBIR =
{

R ∈ R2
+ : R ≤ R⋆(q) with q ∈ R2

}

. (11)

If the arrival rate vector is outside of RBIR, i.e. average

number of bits that arrive is larger than the mean service rate,

then the queuing system is obviously unstable. The stability

region of a policy is defined as the set of bit arrival rate vec-

tors ρ such that for any vector in the interior of the stability

region system stability is achieved [9]. Accordingly, a pol-

icy dominates another policy if the stability region of the one

contains the other. Further, the stability region of a system is

the set of bit arrival rate vectors ρ such that for any vector in

the interior exists at least one resource allocation policy which

achieves system stability. A policy that dominates any other

policy is an optimal policy. Since the stability region of any

policy is a subset of the maximum throughput region a pol-

icy which stability region is equal the maximum throughput

region is optimal and is called a maximum throughput policy

(or throughput optimal policy). In the following we present

a maximum throughput rate allocation policy derived from

the maximum differential backlog algorithm presented in [9]

which basically tries to equalize the queue length at node 1

and 2.

Maximum Throughput Policy: The centralized network

controller observes the current queue length Q(n) = q and

channel states h(n) = h at the end of every time-slot and

adjusts the optimal relay power distribution β⋆ and time-

division parameter α⋆ on the physical layer according to The-

orem 2 so that in the next time-slot we achieve the rate pair

which maximizes the weighted rate sum in RBIR(h) with

weight vector q = [q1, q2],

R(n + 1) = arg max
[R1,R2]∈RBIR(h)

q1R1 + q2R2.

It can be shown that the stability region of the proposed

policy is equal the ergodic bidirectional rate region using the

well developed theory of Lyapunov drift analysis [10], [12],

[11]. Therefore, one has to consider a positive quadratic Lya-

punov function on the buffer levels and show that for any

arrival rate vector within the ergodic rate region the Lya-

punov function has a negative drift whenever the mean num-

ber of unfinished work is large. This allows one to deduce the

stability-in-the-mean of a system, which is equivalent to pos-

itive recurrence and therefore the existence of a steady-state

distribution for an aperiodic irreducible discrete time Markov

chain. Since the proof in [11] can be easily transfered to our

case, we state only the key mathematical tool here.

Theorem 5 ([11]) Let be given the Lyapunov function

L(q) =
∑2

i=1 q2
i . If there exists a compact region Λ ⊆ R2

and positive values υ and ζ exist such that

1. whenever Q(n) = q ∈ Λ, there exists m ∈ N,m < ∞
such that the probability P(Q(n + m) = 0) > 0,

2. E{

L
(

Q(n + 1)
)

− L
(

Q(n)
)∣

∣Q(n) = q
}

< υ −

ζ
∑2

i=1 qi

then there exists a steady-state distribution with bounded first

moments E{Qi} < ∞ such that ζ
∑2

i=1E{Qi} < υ.

The first condition ensures that the zero state is reached

infinitely often with finite mean recurrence times and there-

fore the Markov chain reduces to a single ergodic class. It is

a necessary modification for queuing systems with uncount-

ably infinite state space. The fundamental idea is that if the

drift gets larger in magnitude as the queue lengths increase,

then the first moment of the queue length is bounded (strong

stability of the Markov chain).

The here proposed policy is equivalent to the dynamic

power allocation policy in [11]. It is therefore possible to

adapt the proof in [11] with the following constant

υ = T 2 max
h∈H,R∈RBIR(h)

(

R2
1 + R2

2

)

+
2
∑

i=1

E{B2
i }.

Since the arrival rate vector ρ is assumed to be strictly in the

interior of the ergodic rate region, there exists a ζ̃ > 0 so that

ζ̃1 + ρ ∈ intRBIR also holds. Then the proof works analog

with ζ = 2T ζ̃.
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Fig. 5. Cross-layer design.

Finally, let E{Di} denote the average bit delay at node i.
With Little’s Theorem we have E{Qi} = ρiE{Di}. There-

fore, we have υ/ζ >
∑2

i=1E{Qi} =
∑2

i=1E{Di}ρi using

the boundedness of the first moment according to Theorem 5.

This means that the bound grows asymptotically like 1/ζ as

the arrival rate vector ρ is pushed towards the boundary of the

ergodic rate region. A similar discussion is given in [11].

To clarify the results of this section in Figure 5 we il-

lustrate and discuss numerical queuing simulation results of

a simple example with uniformly distributed channel pro-

cesses. In order to indicate the performance gain, we present

a comparison between the proposed optimal time-division

(OpT) with optimal relay power distribution (optimal achiev-

able rates - OpR) approach, equal time-division (EqT) with

optimal relay power distribution (see [8] for more details), as

well as Round-Robin (RR) scheduling with optimal and equal

time-division (OpT/EqT). A protocol is called a Round-Robin

scheduling when for any communication between two nodes

the time-slot is subdivided into exclusive time-intervals. The

analysis of those scenarios is similar and gives no further in-

sights.

6. CONCLUSION

Two phase bidirectional relaying using interference cancella-

tion is spectral efficient since it avoids the inherent spectral

loss of unidirectional protocols. The principle results found

for bidirectional relaying with equal time division also hold

for the optimized time division. However, the analytic char-

acterization of the convex achievable rate region gets more

involved.

With relay selection we can achieve the same multi-user

space diversity order O(log(log(N))) as distributed beam-

forming, which additionally requires coherent transmission

between distributed relay nodes. From an additional multi-

cast of a relay message on the bidirectional relaying scheme

we see that significant performance gains can be expected if

multiple routing schemes are considered jointly. Finally, the

complete characterization of the bidirectional achievable rate

region allows the design of a throughput optimal rate alloca-

tion policy in a cross-layer design. It shows that a coordinated

resource allocation achieves a significant larger stability re-

gion than a simple Round Robin strategy.
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