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ABSTRACT

In this paper we unify and compare two high rate space-time
coding constructions and layering techniques for MIMO sys-
tems. Algebraic space-time coding constructions are revis-
ited and their relation to non-orthogonal codes (with quasi-
orthogonal layers) is established. We discuss the class of per-
fect and golden space-time block codes, consisting of the ver-
sion used in IEEE 802.16e specification for a system with 2
tx and 2 rx antennas. The main contribution of the paper is to
consider both algebraic and non-orthogonal space-time codes
for the 4 tx and 2 rx antenna setup.

1. INTRODUCTION

MIMO modulation methods that simultaneously improve di-
versity and transmission rate have attracted significant interest
in recent years. The development of these modulation meth-
ods progressed along two separate paths. In crude terms, on
one path, one begins from a full rate MIMO scheme, such as
spatial multiplexing, and optimizes the symbol constellations
for each layer jointly, see [6,9] and references therein. On the
other main path, one begins from a full diversity transmission
scheme, such as an orthogonal space-time block code [3], and
adds new layers or new symbol matrices to improve the sym-
bol rate [16, 18]. In terms of matrix modulation terminology,
these two approaches differ from each other in the way the ba-
sis matrices are selected for the modulation matrix. For both
methods, it is important to optimize symbol constellations so
that the diversity benefits are fully exploited.

MIMO modulation methods that transmit two symbols
per channel use have recently been adopted to OFDM-based
wireless standards, such as IEEE 802.16e (WiMAX) [21].
The 802.16e specification includes a variant of a symbol-rate-
two space-time code, known today as the Golden code [9].
This transmission method requires only two transmit anten-
nas and obtains the highest coding gain know today. It was
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independently discovered in [7, 9, 18] under different names.
Their algebraic properties were further analyzed and the codes
were generalized in [9–11]. Incidentally, the code proposed
in [15] is similar, but obtains lower coding gain. Extensions of
the symbol-rate-two transmission methods for use with four
transmit antennas are also attractive to wireless standards. Such
transmission schemes can be constructed e.g. by puncturing
two layers from 4-layer 4 × 4 MIMO code, or by puncturing
a set of basis matrices from symbol-rate-four non-orthogonal
space-time code [17, 18].

In this paper, we compare different symbol-rate-two MIMO
modulators (or codes) with either two or four transmit anten-
nas, and with two receive antennas. In particular, we explore
the similarities and differences between algebraic MIMO mod-
ulators from [9, 10] and the non-orthogonal MIMO modula-
tors from [17, 18], and evaluate their performance using a
realistic coding chain that models WiMax [20] channel en-
coding.

The following notations are used in the paper: T denotes
transpose and † denotes transpose conjugate. Let Z, Q, C and
Z[j] denote the ring of rational integers, the field of rational
numbers, the field of complex numbers, and the ring of Gaus-
sian integers, where j2 = −1. Let S and S2 denote PAM
and QAM constellation sets, respectively. LetQ(θ) denote an
algebraic number field generated by the primitive element θ.
The m×m dimensional identity matrix is denoted by Im. The
matrix 1m is defined as an all ones m ×m matrix. Given an
m dimensional vector v, V = diag(v) is the m×m diagonal
matrix with Vi,i = vi and Vi,k = 0 for all i, k = 1, . . . , m,
and i 6= k.

2. SYSTEM MODEL

We consider a nT × nR MIMO system. We review symmet-
ric MIMO systems with nT = nR, but our main focus is
on asymmetric systems with nT > nR. We assume that the
channel matrix H remains constant for the duration T of a
codeword X

YnR×T = HnR×nT
XnT×T + ZnR×T (1)



In (1), Z is the complex i.i.d. Gaussian noise matrix with en-
tries CN (0, N0) and H ∈ CnR×nT is the independent Rayleigh
fading channel matrix with complex i.i.d. entries CN (0, 1),
which is given by

H =




h1

h2

...
hnR


 =




h1,1 h1,2 · · · h1,nT

h2,1 h2,2 · · · h2,nT

...
...

. . .
...

hnR,1 hnR,2 · · · hnR,nT


 .

The space-time codes are designed under the assumption that
the elements of the channel matrix are Rayleigh distributed
and they vary independently from one block to another.

3. HIGH-RATE SPACE-TIME CODES

Consider first square (nT = T ) linear dispersion ST block
coding schemes that achieve the diversity/multiplexing gain
tradeoff. For each codeword we can transmit T × nR QAM
information symbols arranged in the matrix

B =
[

b1 b2 · · · bnR

]

=




b1,1 b1,2 · · · b1,nR

...
...

. . .
...

bT,1 bT,2 · · · bT,nR


 (2)

where bi,l ∈ Z[j], i = 1, . . . , nT , l = 1, . . . , nR. We say that
such codes have full rate of nR symbols per channel use. Let
E denote the average energy of the QAM symbols bi,l.

3.1. TAST Codes

We recall threaded-algebraic space-time (TAST) codes codes
from [6]. The TAST codes are constructed by transmitting
a scaled DAST code in each layer (or thread) l, where l =
1, . . . , nR, i.e.,

xl = φlMbl, (3)

where xl are the encoded symbols, bl are the complex QAM
information symbol vectors, and φl is chosen to ensure full
diversity and maximize the coding gain of the component
codes. In [6], φl is given by

φl = φ(l−1)/nT , (4)

where φ = eiλ (λ 6= 0) is either an algebraic number or
transcendental number [6].

In (3), M ∈ CnT×nT is a rotation matrix defining a DAST
code, which is constructed from an algebraic number field
Q(θ) of degree nT [6, 13]. Let s = [s1, . . . , snT ]T = Mb
and ŝ = [ŝ1, . . . , ŝnT ]T = Mb̂ be two different DAST code-
words, where b and b̂ are two different information symbol
vectors. The rotation matrix M is chosen to maximize the as-
sociated minimum product distance dp(s, ŝ). One can easily

verify that DAST codes achieve full diversity, and their cod-
ing gains are proportional to the minimum product distance
associated with the rotations used.

For L layers, where L = nR for the system in this paper,
we can write the TAST codeword matrix as

X =
nR∑

l=1

(
φlel−1

)
diag (Mbl) , (5)

where

e =




0 1 0 · · · 0
... 0 1 0

0
...

. . .
...

0 0 · · · 1
1 0 0 · · · 0




. (6)

3.2. Perfect STBCs

Perfect codes [10, 11] are full rate and full diversity nT nR.
Furthermore they posses the non-vanishing determinant prop-
erty that guarantees that they achieve the DMG tradeoff. The
QAM information symbols are linearly encoded by such STBCs
into an nT × nT codeword matrix X = {xi,l} ∈ C, i, l =
1, . . . , nT . For the special cases of nT = 3, 4, 6, perfect
STBCs were proposed in [10, 11]. The perfect STBCs are
constructed based on cyclic division algebras, where the code-
word with L layers is given by [10, 11],

X =
√

nT

L

L∑

l=1

el−1diag (Mbl) , (7)

where

e =




0 1 0 · · · 0
... 0 1 0

0
...

. . .
...

0 0 · · · 1
γ 0 0 · · · 0




, (8)

and γ is chosen from Z[j] in order to achieve the full diver-
sity and non-vanishing determinant [10]. The factor

√
nT

L is
a power normalization and assures transmit power the same
total power is transmitted when not all layers are encoded.
Comparing to TAST codes, we have a different e matrix and
φ = 1, γ = j.

In this paper, we only consider subcodes of the perfect
STBCs with a reduced number of layers, i.e., L = nR = 2
and the transmission matrix is

X =
√

nT

2

2∑

l=1

el−1diag (Mbl) .

Note that with the Perfect code given above only two transmit
antennas (out of four) are used at any time instant.

The unitary generator matrix M for 4 × 4 Perfect STBC
is given in [11].



3.3. Quasi-orthogonal codes

Quasi-orthogonal or non-orthogonal codes use a Clifford ba-
sis when constructing the linear dispersion code. The ba-
sis matrices are explicitly given for several cases in [17] and
therefore they are not repeated here. In this way, they induce
quasi-orthogonal layers where only some symbols interfere
with each other while others remain orthogonal.

In a variant of Double ABBA [17], coined in what follows
as DjABBA, with XA,XB ,XC and XD STTD blocks en-
coding the symbol pairs (x1, x2), (x3, x4), (x5, x6), (x7, x8) [18]

XT =
[

cos ρ XA + sin ρ XC cos ρ XB + sin ρ XD

 (sin ρ XB − cos ρ XD) sin ρ XA − cos ρ XC

]

(9)
Thus, the matrix transmits eight symbols using a modulation
matrix of size 4×4, which is identical to that of TAST or Per-
fect codes with L = 2, given above. Due to STTD structure,
by puncturing antennas 2 and 4 from X, the result is




cos ρ x1 + sin ρ x5 cos ρ x3 + sin ρ x7

cos ρ x2 + sin ρ x6 cos ρ x4 + sin ρ x8

 (sin ρ x3 − cos ρ x7) sin ρ x1 − cos ρ x5

 (sin ρ x4 − cos ρ x8) sin ρ x2 − cos ρ x6


 , (10)

which is a redundant but equivalent representation of a par-
ticular 2 × 2 Golden code, provided that ρ is appropriately
selected. However, in the presence of four transmit antennas,
the optimal precoder given in [18] differs slightly from that of
the Golden code. Nevertheless, though the layering structure
is different, we see that TAST, Perfect and Quasi-orthogonal
codes are linked to each other. DABBA, in contrast to TAST,
is shown in [17] to reach second order capacity of the 4 × 2
MIMO channel.

4. PERFORMANCE

4.1. Uncoded

We evaluate the performance of selected designs using 4 trans-
mit and 2 receive antennas. The comparison in what fol-
lows assuming QPSK modulation, with 4 bps/Hz spectral effi-
ciency. In particular, we compare DjABBA (with ρ = π/4) to
a two layer Perfect code. Fig. 1 shows the result with Sphere
and LMMSE detection in an iid Rayleigh fading channel. It is
seen that DjABBA improves in perfect code by about 0.5 dB
at high SNR. Although TAST result are not depicted, the sim-
ulations have shown that the Perfect code improves on TAST
by about 0.5 dB at high SNR.

4.2. Coded

The performance evaluation for coded systems is carried out
in an IEEE 802.16-2004 [20] compliant WiMAX simulator.
For the simulations we use the OFDM physical layer with an

0 1 2 3 4 5 6 7
10

−4

10
−3

10
−2

10
−1

Eb/No (dB)

B
E

R

Perfect:Sphere
Perfect:LMMSE
DjABBA:Sphere
DjABBA:LMMSE
MF bound

Fig. 1. Uncoded BER of a two layer Perfect code and
DjABBA in a 4 tx - 2 rx configuration and iid Rayleigh chan-
nel.

Number of OFDM carriers 256
Modulation 16-QAM (Alamouti)

4-QAM (all other schemes)
Bandwidth 10 MHz
Cyclic prefix 1/4 = 5.56 us
Channel estimation perfect
Code block size 35328 bits
Overall code rate 1/2

Table 1. WiMAX system simulation parameters.

FFT size of 256. The standard-conform coding consists of a
concatenation of an outer Reed-Solomon code and an inner
convolutional code. A two stage interleaver after the encoder
avoids error bursts caused by subcarriers with low SNR. The
relevant WiMAX system parameters are summarized in Ta-
ble 1.

We evaluate the performance for spatially uncorrelated
flat and frequency selective block fading channels. The fre-
quency selective channel is generated according to the ITU
Pedestrian B power delay profile.

The receivers for the different space-time codes are maxi-
mum likelihood receivers with hard demapping. For the 4×2
systems the ML receiver is implemented as sphere decoder.

2× 2 systems
The 2 tx and 2 rx antenna system is compared for Alam-

outi coded and Golden coded transmit signals. For Alamouti
coding we employ 16-QAM modulation, and for Golden code
4-QAM to allow for a fair comparison. For both space-time
codes the channel coding is exactly the same. The results in
Fig. 2 show that the Golden Code enjoys approx. 0.8 dB gain
over Alamouti in a Pedestrian B environment when combined
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Fig. 2. Comparison of Golden Code and Alamouti for a coded
2x2 WiMAX transmission.

with the WiMAX conformant concatenated Reed-Solomon-
Convolutional code. In a flat fading environment however,
the gain is only about 0.3 dB.

4× 2 systems
A comparison of DjABBA (with optimal ρ = 0.8881 taken

from [18]) and the Perfect code with two encoded layers is
shown in Fig. 2. Here, we averaged over 11000 channel real-
izations for the flat fading case and 6000 channel realizations
for the Pedestrian B channel model. Channel coding and 4-
QAM modulation is the same as for the 2×2 system employ-
ing the Golden space-time coding to allow for comparisons
between the 4×2 and 2×2 systems. In both scenarios, flat
fading and Pedestrian B, the DjABBA outperforms the Per-
fect code by 0.6 dB.

The weaker performance of the two-layer Perfect code is
due to the reduced number of diversity branches available in
one channel use. On the contrary, the DjABBA uses all inde-
pendent branches between the 4 tx and the 2 rx antennas in
each channel use.

5. CONCLUSION

In this paper we have reviewed and evaluated two different
high rate space-time coding concepts, an algebraic (Perfect)
code and a quasi-orthogonal code (DjABBA). The paper com-
pares the two code constructions by stating their design prin-
ciples and by extensive simulations using a WiMAX compati-
ble simulation chain. The comparisons are done for a medium
rate service, where the modulation symbol alphabet is QPSK
and the coding rate is 1/2. In this setup, DjABBA outperforms
Perfect code by a fraction of a decibel. On the other hand, the
Perfect code may have some implementation advantages in
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Fig. 3. Comparison of DjABBA and Perfect code for a coded
4x2 WiMAX transmission.

that at each time instant only two transmit antennas (out of
four) are used.
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