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ABSTRACT

In wireless networks, a widely studied approach is to mini-
mize transmit powers subject to some quality-of-service con-
straints. Minimizing transmit powers however is not equiva-
lent to minimizing the energy consumption. In wireless sen-
sor networks that operate in a low-rate regime, the discrep-
ancy between power consumption and the overall energy con-
sumption is even more evident since the energy expenditure
for signal processing cannot be neglected. The paper ad-
dresses the problem of minimizing the overall energy con-
sumption in wireless networks, including the energy expen-
diture for hardware. The objective is to give some valuable
insights into the problem. In particular, we point out basic
properties of the optimal power allocation and discuss prop-
erties of the general energy minimization problem. Due to
the complexity, we focus on the problem of finding a power-
time tradeoff by determining the energy-optimal number of
parallel data streams per link for a certain SIR requirement.

1. INTRODUCTION

A crucial and important notion of a certain class of wireless
networks is the energy consumption of network nodes. In-
deed, the minimization of the energy consumption aims at
saving energy costs and maximizing the lifetime duration of
the network nodes. Especially in the context of sensor net-
works, energy consumption is of main interest. Due to their
properties wireless sensor networks are attractive for a wide
range of applications including surveillance, environmental
monitoring, home automation, applications in industrial au-
tomation and control, and logistics.

However, some applications in wireless sensor networks
not only require a long lifetime duration, yet also need to sup-
port certain QoS (Quality of Service) requirements. In most
cases the requirements are in terms of bit-error-rate and/ or
data-rate and can be uniquely mapped onto an SIR require-
ment. There exists a power control theory framework appli-
cable to wireless networks and based on the SIR [1, 2, 3, 4, 5];
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requiring a certain SIR target at each communicating node-
pair, the sum transmit power of the wireless network has to
be minimized. There also exist distributed algorithmic solu-
tions for this problem, which are suitable for a self-organizing
network [1].

In general, minimizing the total transmit power is not equiv-
alent to minimizing the total energy consumption. The total
energy consumption should be understood as transmission en-
ergy consumption together with hardware (or circuit) energy
consumption. This notion of total energy depends on trans-
mission time and sleeping time of the network. Thus, when
energetic optimality in the above sense is desired, both trans-
mission time and transmit power should be optimized jointly.

More precisely, a certain transmit power level is neces-
sary to satisfy certain QoS requirements. If, e.g., the data-rate
increases, the required transmit power level increases as well.
However, at the same time the transmission time decreases, so
that the change in energy spent for transmission mirrors the
resulting shift in the trade-off between transmission time and
transmission power. Consequently, to minimize the energy
consumption we have to find the optimal power-time trade-
off subject to the given SIR requirements.

The paper is organized as follows. First we summarize
some known results of the power minimization problem and
point out basic properties of the optimal power allocation.
Then we discuss the general problem of energy minimization
and its relation to the power minimization problem. Due to
the fact, that the general problem of energy minimization is
difficult to solve we focus on a simplified version that pro-
vides a power-time tradeoff. Finally, we propose an algo-
rithm that determines the power-time tradeoff by finding the
energy-optimal number of data streams per link for a certain
SIR requirement and give some numerical results.

2. SYSTEM MODEL

2.1. Network model

In this paper we consider a multiple antenna wireless net-
work with K transmitter-receiver pairs, where each transmit-
ter and receiver is equipped with N antennas. Let H(k,l) de-



note the channel between the transmitter of the l-th link and
the receiver of the k-th link. Unless otherwise stated, assume
that rank(H(k,l)) = L, with 1 ≤ L ≤ N . Therefore, on
each link, L ≥ 1 data streams can be transmitted in paral-
lel. Let U(k) = (u(k,j))1≤j≤L and V(k) = (v(k,j))1≤j≤L

denote link-specific matrices whose columns are transmit and
receive beamforming vectors of the L data streams of the k-
th link, respectively. Throughout the paper, the beamform-
ing vectors are arbitrary but fixed. Without loss of general-
ity, we can assume that ‖u(k,j)‖2 = 1 and ‖v(k,j)‖2 = 1,
1 ≤ k ≤ K, 1 ≤ j ≤ L. We group the transmit powers
assigned to the data streams of link k in the vector p(k) =
(p(k)

1 , . . . , p
(k)
L ), 1 ≤ k ≤ K. Due to the power constraints

on each transmitting node, we always have ‖p(k)‖1 ≤ P, 1 ≤
k ≤ K, for some given constant P . We further define P(k) =
diag(p(k)), 1 ≤ k ≤ K, and group the spatial link power
allocations and link beamformers in the setsP = {P(k)}1≤k≤K ,
U = {U(k)}1≤k≤K , V = {V(k)}1≤k≤K . Thus, provided
that all links are simultaneously active in the same frequency
band, the SIR of the l-th data stream of the k-th link can be
written as

SIRk,j :=
p
(k)
j D

(k)
j∑K

l=1

∑L
i=1 p

(l)
i G

(k,l)
j,i + σ2

,

where G
(k,k)
j,j := 0, 1 ≤ k ≤ K, 1 ≤ j ≤ L and

D
(k)
j = |v(k,j)HH(k,k)u(k,j)|2,

G
(k,l)
j,i = |v(k,j)HH(k,l)u(l,i)|2

and σ2 > 0 is the variance of the spatially uncorrelated white
Gaussian noise on each link. Note that in general, the SIR
defined above depends on transmit powers and beamformers
of all links as well as on the receive beamformer of the desired
link. We call D

(k)
j and G

(k,l)
j,i the desired and interference

channel gains, respectively. Let

D(k) = diag
(
D

(k)
1 , . . . , D

(k)
L

)

be the L × L diagonal matrix of the desired channel gains of
link k and

G(k,l) =
(
G

(k,l)
j,i

)
1≤i,j≤L

the L×L matrix of the interference gains between transmitter
l and receiver k. Note that by assumption , trace(G(k,k)) = 0
for each 1 ≤ k ≤ K.

2.2. SIR metrics

In our optimization approach, we put certain requirements on
a suitably chosen SIR metric. More precisely, we require that

θ(SIRk,1, . . . , SIRk,L) ≥ γk, 1 ≤ k ≤ K (1)

where θ : RL
+ → R+ is a SIR metric that assigns a single non-

negative value to the several SIRs of the data streams. Given a
specific SIR metric, this value can be interpreted as a ”virtual”
SIR that should reflect the quality-of-service perceived by a
link with multiple data streams. In this paper, we distinguish
two types of the SIR metric. The first one is the minimum
metric defined to be

θ(SIRk,1, . . . , SIRk,L) = min
1≤i≤L

SIRk,i, 1 ≤ k ≤ K . (2)

By (1), this metric is suitable when data streams of each link
k are treated independently and each data stream needs to sat-
isfy the common SIR requirement γk. Note that if the data
rate is a strictly increasing function of the SIR, a parallel
transmission of L data streams under the assumption of (1)
and (2) increases the data rate of each link by the factor of L,
when compared with the one data stream strategy. However,
the requirement that each data stream must satisfy a common
SIR requirement is likely to be infeasible in multiple antenna
systems with independent data streams (see also sections 5
and 6). Even if the SIR requirement is feasible, the neces-
sary transmit powers for achieving it is usually relatively high.
This motivates the second metric of interest in this paper, the
so-called average metric defined to be (1 ≤ k ≤ K)

θ(SIRk,1, . . . , SIRk,L) = exp
( 1

L

L∑

i=1

log(1 + SIRk,i)
)
− 1 .

(3)
In order to motivate this metric, assume for a moment that
there is only one data stream on each link and the SIR of link
k (the virtual SIR) is denoted by SIRk. If a linear receiver is
then followed by single-user decoders, one for each link, the
data rate achieved on link k under an independent Gaussian
input distribution is equal to log(1 + SIRk) nats per channel
use (with some possible constants that are neglected here),
where log(x), x > 0, denotes the natural logarithm. Conse-
quently, if there are L data streams on link k and each data
stream is equipped with a single-user decoder, the achievable
data rate is equal to

∑
l log(1 + SIRk,l). Now, as in the case

of the minimum metric, we require that a parallel transmis-
sion of L data streams provides L times increase in the data
rate so that we can write

L log(1 + SIRk) =
∑

l

log(1 + SIRk,l), 1 ≤ k ≤ K .

From this, it follows that SIRk in the case of L = 1 which
is necessary to support the same link rate as in the case of L
parallel data streams is given by

SIRk = θ(SIRk,1, . . . , SIRk,L), 1 ≤ k ≤ K

where θ is the average metric defined by (3).
The average metric is suitable when the L streams of a

single link are treated separately and are allowed to operate



at different SIR levels in order to support different modula-
tion levels, and hence different data rates. The problem of
choosing SIR levels for different data streams is addressed in
Section 5.3.

Note that the simplified version of the average metric with
log(1 + SIR) ≈ SIR represents an aggregated SIR measure
of the link k: θ(SIRk,1, . . . , SIRk,L) = 1/L

∑K
i=1 SIRk,i.

However, this metric is not considered here.

2.3. Standard, hardware and energy model

The network operation time is partitioned into frames of dura-
tion TF , with each frame consisting of the transmit time and
sleep time, in which the transmitter and receiver hardware are
in the sleep (stand-by) mode. In this paper, it is assumed that
the symbol rate (or the symbol duration) on each parallel data
stream is fixed to comply with some practical constraints. In
other words, the symbol rates of the L data streams are the
same and equal to some predetermined basic symbol rate.1

Therefore, given a set of beamformers and transmit powers,
the symbol rate per link can be increased only through the
increase of the number of parallel data streams L. As an im-
mediate consequence, the transmit time of link k is equal to
TA/L, where TA is the time which is necessary to transmit
a data packet of fixed length using the corresponding single
data stream strategy with a L times lower data rate. Conse-
quently, for the sleep time TS we have TS = TF − TA/L2.

With the expressions for transmit time and sleep time, the
energy-consumption E = EA+ES can be determined, where
EA and ES are the energy consumption in transmit mode
and sleep mode, respectively. The transceiver hardware of
each node is assumed to consist of a microcontroller and N
transceiver chips, each supporting one antenna element. Let
PA and PS denote the hardware-related power consumption
in active and sleep mode. Then we have

E = EA + ES =
K∑

k=1

TA
trace(P(k)) + PA

L
+ KTSPS

=
K∑

k=1

TA
trace(P(k)) + PA − PS

L
+ KTF PS ,

(4)

where

PA = PC
A (N) + PM

A

PS = PC
S (N) + PM

S .
(5)

Here PC
A , PC

S denote the power consumption of the transceiver
chips(including both nodes of the link) in active and sleep
mode, PM

A , PM
S denote the power consumption of the mi-

crocontroller (including both nodes of the link) in active and
sleep mode.

1However, note that the transmitted symbols can carry different numbers
of information bits.

2In the following we neglect the time to transmit control data or pilot
symbols for channel estimation.

3. TRANSMIT POWER MINIMIZATION

Multiple antenna systems are capable of providing high data
rate transmissions in a fading environment without the need
of increasing the signal bandwidth. This suggests the question
whether they can be used to reduce the energy consumption in
wireless networks. Before addressing this problem, we must
first understand the problem of minimizing transmit powers
subject to some SIR requirements. In fact, note that for a fixed
transmit time TA, a fixed number of antennas N and fixed
beamformers U(k),V(k) at each transmitter-receiver pair, the
problem of energy minimization subject to the SIR require-
ments is equivalent to minimizing transmit powers subject to
the same SIR requirements. In this section, we briefly sum-
marize some known results on the power minimization prob-
lem and point out basic properties of the optimal power allo-
cation.

Let γ
(k)
l be the SIR requirement for the lth data stream of

link k. We define

Γ = diag
(
γ

(1)
1 , . . . , γ

(1)
L , . . . , γ

(K)
1 , . . . , γ

(K)
L )

)

and, without loss of generality, assume that Γ is positive defi-
nite. Now we say that Γ is feasible if there exists a power vec-
tor p > 0 (called a valid power vector) such that SIRk,l(p) ≥
γ

(k)
l for all k and l. It is well-known [2, 4, 5] that Γ is feasible

if and only if
ρ(ΓD−1G) < 1 (6)

where ρ(ΓD−1G) is the spectral radius of ΓD−1G, D =
diag(D(1), . . . ,D(K)), and G = (G(k,l)) denotes a matrix
whose (k, l)th entry is the L × L matrix G(k,l) as defined in
section 2.1. Hence, Γ is feasible if and only if Γ ∈ F where

F := {Γ : ρ(ΓD−1G) < 1} (7)

Now, if condition (6) is fulfilled, there is a unique valid power
vector p∗(Γ) = (p∗1(Γ), . . . , p∗K(Γ)) > 0 such that p∗(Γ) ≤
p for all other valid power vectors p [5]. In words, p∗(Γ)
is the unique component-wise minimal valid power vector.
Furthermore, if (6) holds, then

p∗(Γ) = σ2
(
Γ−1D−G

)−1

1

= σ2

[ ∞∑

l=0

(ΓD−1G)l

]
ΓD−11

= σ2ΓD−11 + σ2

[ ∞∑

l=1

(ΓD−1G)l

]
ΓD−11,

(8)

where we used the Neumann series in the second step [6]. We
point out that p∗(Γ) is unique and positive for any nonnega-
tive (not necessarily irreducible) matrix D−1G, provided that
Γ is positive definite [5]. Obviously, Γ is positive definite if



and only if all data streams have a (strictly) positive SIR re-
quirement. By (8), we see that for sufficiently small SIR re-
quirements and interference gains in G, one can approximate
p∗(Γ) by a finite series

p∗(Γ) = σ2ΓD−11 + σ2

[ t∑

l=1

(ΓD−1G)l

]
ΓD−11

for some t ≥ 1.
Now since p∗(Γ) is the component-wise minimal, the to-

tal power consumption is equal to

Pmin(Γ) := ‖p∗(Γ)‖1 = σ21T
(
Γ−1D−G

)−1

1 > 0 . (9)

Of course,

Pmin(Γ) →
{

0 Γ → 0,Γ ∈ C(0)
+∞ Γ → Γ̂,Γ ∈ C(Γ̂), Γ̂ ∈ ∂F,

(10)

where C(Γ) ∈ F is any path (curve) in F that ends at the point
Γ and ∂F = {Γ : ρ(ΓD−1G) = 1} is the boundary of the
feasible SIR region F defined by (7).

From practical point of view, it is worth pointing out that
the power vector (8) can be determined in a distributed man-
ner using the iterative algorithm of [1, 7]. In what follows,
p∗(Γ) is referred to as the optimal power vector.

3.1. Some properties of the optimal power vector

In the following, we show some properties of the optimal
power vector p∗(γI) under the assumption that all SIR re-
quirements are equal, that is, we have Γ = γI. Without loss
of generality, we further assume that σ2 = 1.

First, let us consider the first derivation of

p∗k(γI) = eT
k

( 1
γ
I−D−1G

)−1

D−11

= eT
k

( 1
γ
D−G

)−1

1
(11)

where ek = (0, . . . , 0, 1, 0, . . . , 0) denotes the unity vector
with 1 at the k-th position. We use the following relation: for
each x ∈ D ⊆ R (D is an open set) and an arbitrary invertible
matrix A(x), whose entries are twice continuously differen-
tiable functions of x ∈ D, there holds A(x)A−1(x) = I, for
all x ∈ D ⊆ R, and hence we have

dA−1

dx
(x) = −A−1(x)

dA(x)
dx

A−1(x), x ∈ D .

Now we define A(γ) = (1/γD−G) with γ ∈ D = (0, 1/ρ(D−1G)).
Note, that D = (0,+∞) = R++, if ρ(D−1G) = 0. Now
since (dA/dγ)(γ) = −1/γ2D, we have

dp∗k
dγ

(γI) = eT
k (D− γG)−1D(D− γG)−11

= eT
k (I− γD−1G)−2D−11 > 0 .

Due to the fact, that D is a positive definite matrix, the first
derivation is positive for each k. Consequently p∗k(γI) is a
strictly monotonically increasing function. Further, we have

P ′min(γI) =
dPmin

dγ
(γI) = 1T (I− γD−1G)−2D−11 > 0 .

Both derivations show how fast pk(γI) and Pmin(γI) change
depending on γ ∈ (0, 1/ρ(D−1G)). If for example γ > 0 is
sufficiently small, then

P ′min(γI) ≈ 1T (I + γD−1G)2D−11, G 6= 0 .

In particular, since limγ→0 P ′min(γI) = 1T D−11, the slope
of Pmin for sufficiently small values of γ > 0 only depends
on the diagonal elements of the matrix D−1, which are deter-
mined by the quality of the desired channels.

Considering the second derivative

d2A−1

dx2
(x) =

A−1(x)
(
2
dA(x)

dx
A−1(x)

dA(x)
dx

− d2A(x)
dx2

)
A−1(x)

and the fact that (d2A/dγ2)(γ) = 2/γ3D, γ ∈ (0, 1/ρ(D−1G)),
one obtains after some elementary calculations

d2pk

dγ2
(γI) = 2eT

k (I− γD−1G)−3D−1GD−11

d2Pmin

dγ2
(γI) = 21T (I− γD−1G)−3D−1GD−11 .

The second derivations are non-negative for all γ ∈ D =
(0, 1/ρ(D−1G)) because (I− γD−1G)−3 is a non-negative
matrix. This implies that both p∗k(γI) and Pmin(γI) are con-
vex functions on D. Clearly, the second derivative of Pmin

is strictly positive unless G ≥ 0 is a zero matrix. Hence
Pmin(γI) is a strictly convex function (except in the orthogo-
nal case). Now, if G ≥ 0 is irreducible, then p∗k(γI) is strictly
convex for all k. This follows from the fact that D−1GD−11 6=
0 is a non-negative vector and (I − γD−1G)−1 is a positive
matrix for all γ ∈ (0, 1/ρ(D−1G)) and any irreducible ma-
trix G. Multiplying a non-negative vector (except the zero
vector) with a positive matrix results in a positive vector. The
positivity of (I− γD−1G)−1 follows from the Neumann se-
ries and the fact, that a quadratic non-negative matrix A is
irreducible if and only if for all pairs (i, j), there exists a num-
ber n ∈ N, such that (An)i,j > 0 [8, 5].

3.2. Discussion

The problem of minimizing transmit powers subject to SIR
requirements is well understood. The optimal power vector
can be explicitly computed when the channel matrices D and
G are known. If they are not known, each link can itera-
tively compute its transmit power, provided that there is some



coarse synchronization between links and a low-rate feedback
channel for each transmitter-receiver pair [1].

By Section 3.1, it follows that for sufficiently small SIR
requirements, the total transmit power Pmin(γI) can be as-
sumed to linearly depend on the SIR requirement γ, with the
slope determined by the diagonal entries of D. Since the sec-
ond derivative is positive (except for the case of mutually or-
thogonal links), the growth rate of the total transmit power
increases as γ increases. Furthermore, by (10), it diverges to
infinity as γ approaches 1/ρ(D−1G).

As a consequence, if the operating point is in the low
SIR regime, then transmit and receive beamformers should
be matched to the desired channel in the sense that D(k) =
diag(λ(k)

1 , . . . , λ
(k)
L ) where λ

(k)
1 , . . . , λ

(k)
L > 0 are the largest

positive eigenvalues of the matrix H(k,k)H(k,k)H . This is not
true for relatively large SIR requirements γ, in which case it
may be better to choose the beamformers so as to avoid the in-
terference. Note that for a sufficiently large SIR requirement,
the total transmit power is (to a large extent) determined by
the value of the spectral radius ρ(D−1G), which is strongly
influenced by the matrix of interference gains G. In fact, by
[9], we know that for sufficiently large γ ∈ (0, 1/ρ(D−1G)),

Pmin(γI) ≈ γ α

1− γρ(D−1G)

where α > 0 is a constant that depends on the matrices D and
G. Finally, note that supporting a common SIR requirement
on L independent parallel data streams can be very insuffi-
cient in terms of the power consumption since some of the
L positive eigenvalues of the matrix H(k,k)H(k,k)H may be
relatively small.

4. THE PROBLEM OF ENERGY MINIMIZATION

The previous section was devoted to the problem of min-
imizing transmit powers for given fixed system parameters
(N, L,U ,V). In particular, this implies a fixed transmit power
P and makes the power vector in (8) be also optimal in the
sense of minimizing the overall energy consumption. How-
ever, as mentioned in the introduction, it may be possible to
achieve further energy savings by jointly optimizing transmit
powers and transmit time for a given set of transmit and re-
ceive beamformers. In our setting (see Section 2 and in par-
ticular Section 2.3), this means to minimize the overall (total)
energy consumption with respect to (P, L) where P satisfies
the power constraints and L ∈ {1, . . . , N}. In this section,
we also discuss a more general (and significantly more com-
plicated) problem, in which links can choose different num-
bers of parallel data streams L1, . . . , LK ∈ {1, . . . , N}. Note
that in this case, P is a set of time varying transmit power ma-
trices such that the instantaneous transmit powers depend on
the overall number of active data streams. This approach is
not of interest in practice due to its complexity so that our fo-

cus later in the paper will be on the case of a common number
of data streams L per link.

Multiple antenna techniques may require significantly more
hardware. Indeed, each antenna element is connected with its
own transceiver chip, and hence nodes equipped with multi-
ple antennas need more energy. Moreover, additional chan-
nel estimation and the need for more control data will further
increase the energy consumption. On the other hand, mul-
tiple antenna techniques may improve the robustness of the
network or may support higher SIR requirements. This is of
interest in networks, where the QoS-requirements are more
stringent and the requirements on outage probability are quite
low. Another possibility is to use multiple antenna techniques
to increase the modulation level of the data stream or to trans-
mit multiple data streams. Then the transmit time may be
decreased and energy may be saved. Indeed, diverse multi-
ple antenna techniques can be used. More precisely, one can
think of classical beamforming, space time codes, the use of
diversity in form of antenna selection or the transmission of
multiple data streams, where each of these techniques has its
advantages and disadvantages. Besides one can think of op-
timizing transmit power, transmit beamformers and receive
beamformers jointly [10, 11, 12].

Nevertheless, optimizing over all variables (N, L,U ,P,V)
– that means number of antennas, number of data streams,
transmission strategy and transmit power – is a problem, that
is difficult to solve. So we intend to investigate a simplified
version of this problem, where (N,U ,V) are fixed. Remem-
ber, the energy consumption of the hardware has a significant
influence on the total energy consumption. Clearly, the hard-
ware energy consumption depends on the number of antennas,
where each antenna element requires its own transceiver chip,
the transmission time and the sleeping time of the network.
Considering the second factor due to fixed N , the transmis-
sion time may be shortened, if the links transmit at a higher
rate. A higher rate can be achieved by increasing the modu-
lation level, that implicitly requires to adapt the SIR require-
ments, or by transmitting several data streams. Hence, as can
be easily seen, the transmit power is a function of the trans-
mission time. More precisely, if the data rate increases, the re-
quired transmit power level increases as well. However, at the
same time the transmission time decreases. Now the question
arises, whether the change of energy spent for transmission
mirrors the change of energy spent for hardware. Therefore,
in the following we minimize the energy consumption finding
the optimal power-time tradeoff subject to given SIR require-
ments.

As assumed in section 2.3, the data rate per link can be
increased only through the increase of the number of par-
allel data streams L. This leads to a transmission time of
TA/L. Now, assuming that N,U ,V are fixed, we consider the
restricted problem E(P, L) that minimizes the energy con-
sumption subject to certain requirements on link SIR metrics.
The optimization problem, that provides a power-time trade-



off, can be written as follows

min
L,P

E(L,P) s.t.

θ(SIRk,1(L,P), . . . , SIRk,L(L,P)) ≥ γk, 1 ≤ k ≤ K.

(12)

Note, that the upper problem can be thought of as more gen-
eral, if the links choose different numbers of parallel data
streams L1, . . . , LK . Under the assumption that the same data
amount is transmitted during a frame it follows that the links
transmit during the transmit times TA/L1, . . . , TA/LK that
may be different long. As an immediate consequence, the op-
timal transmit power vector changes over time. We have max-
imal max(L1, . . . , LK) ≤ N different power vectors, that
need to satisfy the SIR requirements. Note, that this problem
is a combinatorial one. Clearly, if the maximum number of
parallel data streams is N , there exist NK possible combina-
tions of active parallel data streams (L1, . . . , LK). Assuming,
that the number of antennas and the number of active links
in the neighbourhood is limited, the problem can be solved
by comparing all possible combinations. Otherwise a simple
heuristic is needed. However, due to its complexity this ap-
proach is not of interest in practice. Nevertheless, it provides
a lower bound.

5. ADAPTIVE ENERGY MINIMIZATION FOR
FIXED BEAMFORMERS

In this section we first characterize problem (12) and then de-
rive an algorithm to solving it in order to find the energy-
optimal number of data streams per link L∗, which uniquely
determines the energy-optimal power allocation P∗, for a cer-
tain SIR requirement. Note, that the beamformers U(k),V(k),∀k

and the number of antennas N are fixed.

5.1. Problem characterization

By (12), the problem is to find an optimal tradeoff between
transmit powers trace(P(k)) (which should be as low as possi-
ble) and the number of parallel data streams L (which should
be as large as possible in order to switch off the hardware
components). Note that these objectives are opposed since a
larger number of parallel data streams implies higher transmit
powers that are necessary to satisfy the SIR requirements. To
achieve the optimal trade-off, we discuss the problem in an
incremental way. Define

tΣ(L0) = min
P

1
L0

K∑

k=1

(trace(P(k)) + PA − PS) s.t.

θ(SIRk,1, . . . , SIRk,L) ≥ γk, 1 ≤ k ≤ K,

(13)

where tΣ(L0) denotes the minimum sum power to fulfill the
requirements for a certain number L0 of parallel data streams.

We start with L = L0. If L increases to L = L + 1, an
energetic advantage can be recognized, if tΣ(L) − tΣ(L −
1) < 0. Then an additional data stream decreases the energy
consumption. As an immediate consequence, we simple have
to solve the following problem

L∗ = max L s.t. tΣ(L)− tΣ(L− 1) < 0. (14)

Hence, the energy optimal strategy can be achieved by maxi-
mal L∗ calculations of energy optimal strategies.

5.2. Algorithm

The following algorithm is derived from section 5.1 and can
be applied using an arbitrary SIR metric. It presents a simple
way to solve (12) and determines the energy-optimal number
of data streams per link L∗ and the energy-optimal power al-
location for a certain SIR requirement. The algorithm works
as follows (for an arbitrary Γ):

i Initialization L = 0, L∗ = 0

ii L = L + 1

iii if E(Γ, L− 1) < E(Γ, L) L∗ = L− 1
else (if L < N goto (ii) else L∗ = L)

5.3. Average metric

Given the SIR requirement γk for each link k, in this section
we propose a heuristic approach to specify the SIR require-
ments of each data stream γ

(k)
l for the average metric and

discuss whether the heuristic is convenient.
If the beamformers have to be fixed, a common and sim-

ple choice is to adapt them to the channel. The singular value
decomposition of the channel of link k provides the trans-
mit beamformers and receive beamformers and the singular
values of the data streams: H(k,k) = V(k)S(k)U(k), where
the diagonal elements of S(k) represent the ordered singular
values (s(k)

1 , . . . , s
(k)
N ) ≥ 0 of link k. If no interference oc-

curs, the SIR of link k and data stream l is simply SIRk,l =

p
(k)
l s

(k)
l

2
/σ2. According to this relation it seems reasonable

to determine the SIR requirements for each data stream such
that equation (3) is fulfilled and we have

γ
(k)
1

s
(k)
1

2 = . . . =
γ

(k)
L

s
(k)
L

2 , ∀k.

Clearly, in practice there is interference on each link and hence
this choice may be not optimal.

6. NUMERICAL RESULTS

This section present some numerical results. We consider a
simple network with N = 4 antennas per node and K =



15 transmitter-receiver pairs. The simulation parameters are
chosen as follows: TF = 3s, TA = 4ms, PC

A = 0.035W,
PM

A = 0.003W, PS = 0.00005W. The channel is modeled
as a channel with a line-of-sight path and several non-line-
of-sight paths, where the Rice-factor is chosen to be 4. The
average distance of the transmitter-receiver pairs is d = 5m,
the path-loss exponent n = 3.5. Figure 1 depicts the en-
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Fig. 1. Energy consumption over SIR requirements, N = 4

ergy consumption over SIR requirements for the following 5
transmission strategies. We compare the simple SISO-case
with the proposed algorithm that determines adaptively the
energy-optimal number of data streams for both average and
minimum metric. Further, we depict the energy consumption
of the average and minimum metric for a fixed number L = 2
of data streams. In both cases (adaptive and fixed number of
data streams) the beamformers are adapted to the channel.

The simulation results show for both minimum and av-
erage metric, that with increasing SIR requirements γk, 1 ≤
k ≤ K the energy-optimal number of data streams L∗ de-
creases. The stepwise changes of the curve follow from the
discrete transitions from L to L − 1 as energy optimal num-
ber of data streams. Indeed, if the number of data streams is
fixed (see for an example the grey lines with L = 2), only a
part of the performance curve can be achieved. As expected it
can be seen, that the maximum SIR that can be supported by
the adaptive strategy, is achieved by concentrating the power
on one data stream (with the maximum singular value of the
channel).

Now, comparing both minimum and average metric, the
impact of the SIR metric on the performance can be evalu-
ated. The transmission strategy that is based on the minimum
metric is energy suboptimal. This is due to the fact, that the
performance is determined by the active data stream with the
worst singular value of the channel. Indeed, the minimum
metric can be interpreted as a max-min-fair concept, that suf-
fers by its inefficiency. This is true if the singular values of
the channel differ as is in general the case.

The comparison between the adaptive strategy and SISO
shows that both metrics can outperform SISO in the high SIR
region. In the low SIR region the minimum metric suffers
from its fairness, whereas the average metric performs better
than SISO. The performance gains highly depend on the re-
lation between the energy consumption of the hardware and
the energy consumption for transmitting data. Consequently,
hardware properties and the transmission distance between
the nodes play a decisive role. A larger distance between
nodes improves the gains of multiple antenna concepts as the
influence of hardware energy consumption reduces.
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Fig. 2. Outage probability over SIR requirements averaged
over 1000 channel realizations, N = 4

In addition, figure 2 depicts the outage probability over
the SIR requirements for the 5 transmission strategies. The
outage probability is defined as follows: Pout(γ) = P (ρ(ΓD−1G) ≥
1). Regardless of the energy consumption, it can be seen that
the adaptive approach supports high SIR requirements and
that the minimum metric for a fixed number of active data
streams L = 2 again suffers from its fairness.

7. CONCLUSIONS

In wireless networks, a widely studied approach is to mini-
mize transmit powers subject to some QoS constraints. How-
ever, minimizing the transmit powers is not equivalent to min-
imizing the energy consumption. In this paper we addressed
the problem of minimizing the overall energy consumption in
wireless networks including the energy consumption for hard-
ware. Therefore, we first pointed out some basic properties of
the optimal power allocation. In order to give some insights,
we then discussed the general energy minimization problem
that depends on system parameters as the number of antennas
N , on the transmission strategy represented by beamformers
and number of parallel data streams and on transmit powers.
Due to the fact that the general problem is quite complex we



focused on a restricted problem. Considering the relation be-
tween transmission time and transmit power, we optimized
both jointly to find an energy-optimal power-time tradeoff.
More precisely, we proposed an algorithm that determines the
energy-optimal number of data streams per link for a certain
SIR requirement.

To gain further insights into the energy minimization prob-
lem, it has to be considered for assumptions that may be more
general or give another perspective on the problem. Further,
note that the notion of energy minimization is not restricted to
sensor networks. Thus, in future work the optimization prob-
lem may also include other aims and constraints.

8. REFERENCES

[1] G.J. Foschini and Z. Miljanic, “A simple distributed au-
tonomous power control algorithm and its convergence,” IEEE
Trans. on Vehicul. Technol., vol. 42, no. 4, pp. 641–646,
November 1993.

[2] J. Zander, “Distributed cochannel interference control in cel-
lular radio systems,” IEEE Trans. Veh. Technol., vol. 41, pp.
305–311, August 1992.

[3] S.A. Grandhi, J. Zander, and R. Yates, “Constrained power
control,” Wireless Personal Communications, Kluwer, vol. 2,
no. 3, pp. 257–270, 1995.

[4] N. Bambos, S.C. Chen, and G.J. Pottie, “Channel access algo-
rithms with active link protection for wireless communication
networks with power control,” IEEE/ACM Trans. Networking,
vol. 8, no. 5, pp. 583–597, October 2000.

[5] S. Stanczak, M. Wiczanowski, and H. Boche, Theory and Al-
gorithms for Resource Allocation in Wireless Networks, Lec-
ture Notes in Computer Science (LNCS). Springer, Berlin,
2006.

[6] C. D. Meyer, Matrix Analysis and Applied Linear Algebra,
SIAM, Philadelphia, 2000.

[7] R.D. Yates, “A framework for uplink power control in cellular
radio systems,” IEEE J. Select. Areas Commun., vol. 13, no. 7,
pp. 1341–1347, September 1995.

[8] E. Seneta, Non-Negative Matrices and Markov Chains,
Springer, Berlin, 1981.

[9] H. Boche and S. Stanczak, “Convexity of some feasible QoS
regions and asymptotic behavior of the minimum total power
in CDMA systems,” IEEE Trans. Commun., vol. 52, no. 12,
pp. 2190–2197, December 2004.

[10] F. Rashid-Farrokhi, J. R. Liu, and L. Tassiulas, “Transmit
beamforming and power control for cellular wireless systems,”
IEEE JSAC, vol. 16, no. 8, pp. 1437–1450, Oct 1998.

[11] M. Bengtsson and B. Ottersten, “Optimal downlink beamform-
ing using semidefinite optimization,” in Proc. Allerton Confer-
ence, Sep 1999.

[12] M. Schubert and H. Boche, QoS-Based Resource Allocation
and Transceiver Optimization, Now the essence of knowledge.
Verdu, Princeton, foundations and trends edition, 2006.


