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ABSTRACT

Wireless communication links are often coupled by interfe-
rence (e.g. smart antenna beamforming system with overlap-
ping beams or non-orthogonal CDMA). It is thus desirable
to include physical layer aspects and power control in the
quality-of-service model. But this complicates the task of re-
source allocation. In this paper, we investigate the problem
of weighted proportional fairness for log-convex interference
functions. By introducing the concept of a dependency ma-
trix, we characterize the coupling between interference func-
tions. This facilitates conditions for the existence of a pro-
portionally fair operating point. We also show under which
condition an optimizer exists and we provide a sufficient con-
dition for uniqueness of this optimizer.

1. INTRODUCTION

The motivation for proportional fair resource allocation [1]
is the observed utility-inefficiency of min-max fairness. A
min-max fair scheduler allocates the resources in such a way
that all K communication links achieve the same quality-of-
service (QoS). This strategy does not perform well in the pre-
sence of bottleneck links. If one link is very weak, then it
may require all of the available resource in order to achieve
an acceptable QoS. Min-max fairness is therefore known for
its bad overall system efficiency.

Proportional fairness avoids this effect by putting more
emphasis on the links with good channel conditions. This was
first studied in the context of wireline networks [1, 2]. Later,
it was also successfully applied in the wireless context (see
e.g. [3]). Proportional fairness is especially useful for elastic
traffic, since it exploits good channel states, and avoids the
bad ones, while still preserving a certain degree of fairness.

It was shown in [2, 4] that proportional fairness corre-
sponds to the optimum of a specific utility or cost function.
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Sometimes, this problem is generalized by introducing in-
dividual weighting factors α = [α1, . . . , αK ]T , normalized
such that ‖α‖1 =

∑

k αk = 1. The weights α can model
individual user requirements and possibly depend on system
parameters like priorities, queue lengths, etc. By appropria-
tely choosing α it is possible to trade off overall efficiency
against fairness. We can assume α > 0. The choice αk = 0
simply means that this link is excluded from the optimization.

This problem of weighted proportional fairness can be
written as

inf
[QoS1,...,QoSK ]∈Q

(
K
∑

k=1

αk · log QoSk
)

, (1)

where Q is the quality-of-service (QoS) feasible region (see
the illustration in Fig. 1).
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Fig. 1. Illustration of weighted proportional fairness (1). A
suitable trade-off point is found by adjusting the weights α.

Sometimes, a maximization can be required instead of a
minimization, e.g. when QoS stands for throughput or another
performance measure that we wish to maximize. In this case,
we can still use the form (1) with QoS−1

k instead of QoSk.
In this paper we will characterize the infimum (1), who-

se existence is often ensured by the properties of the region
Q. However, the region Q can be complicated, especially for



wireless systems with mutual interference, which possibly de-
pends on signal processing techniques and other strategies for
interference reduction. For example, smart antenna beamfor-
ming systems are often non-orthogonal, i.e. users are coupled
by overlapping beams. So before we can start characterizing
(1), we need to specify the underlying QoS model.

1.1. Quality-of-Service Model

Some notational conventions are: Matrices and vectors are de-
noted by bold capital letters and bold lowercase letters, re-
spectively. Let y be a vector, then yl = [y]l is the lth compo-
nent. Likewise, Amn = [A]mn is a component of the matrix
A. The notation y ≥ 0 means that yl ≥ 0 for all components
l. y ≥ x means component-wise inequality. The set of non-
negative reals is denoted as R+. The set of positive reals is
denoted as R++.

The system consists of propagation channels and trans-
mit/receive strategies, which possibly include signal proces-
sing and coding techniques for interference reduction and ro-
bustness. Since all these functionalities are interdependent, a
joint (cross-layer) optimization would be preferable. Howe-
ver, the analytical treatment of such a complicated model is
difficult, if not impossible. It is therefore important to for-
mulate an abstract model, which is simple enough to allow
for efficient analysis and optimization, but which still incor-
porates the most important effects that dominate the system
performance.

In this paper, we assume that QoS stands for the signal-
to-interference ratio (SIR). The signal-to-interference ratios
SIR1, . . . ,SIRK depend on the transmission powers

p = [p1, . . . , pK ]T .

Generally, we can write

SIRk(p) =
pk
Ik(p)

(2)

for all communication links k = 1, 2, . . . ,K, where Ik(p)
is the interference (and possibly noise) power experienced by
the kth communication link.

In this context, proportional fairness means that we seek
the maximum of the utility function

∑

k αk log SIRk(p). Equi-
valently, we can ask for the minimum of the inverse function

−
∑

k

αk log SIRk(p) =
∑

k

αk log
( 1

SIRk(p)

)

The ‘cost’ (1/SIRk) can be regarded as a high-SIR approxi-
mation of the normalized minimum mean square error, i.e.,
MMSEk = 1/(1 + SIRk) ≈ 1/SIRk. It also models the slo-
pe of the BER curve for a system with diversity order one.
Another interpretation is the delay (average customer time)
D(SIR) for an M/M/1 queuing system in the low-SNR re-
gime [5]. Given an arrival rate λ and a service rate ν, the de-
lay isD(SIR) = 1/(ν−λ). For low SIR, we can approximate

ν = log(1 + SIRk) ≈ SIRk, so D(SIR) ≈ 1/SIR for small
λ.

1.2. Log-Convex Interference Functions

We consider the following interference model. The interfe-
rence experienced by the kth user is modeled by a function
Ik : RK+ 7→ R+, which is defined by the following frame-
work of axioms.

A1. I(p) ≥ 0 and there exists a p′ > 0 such that I(p′) > 0
A2. I(αp) = αI(p) for α > 0
A3. I(p′) ≥ I(p) if p′ ≥ p
A4. I(es) is log-convex on RK (substituting p = es)

A function f(x) is said to be log-convex if log f(x) is convex.
If I(p) is convex, then I(es) is log-convex.

It was shown in [6] that A1 implies that I(p) > 0 for
all p > 0. So property A1 ensures that interference always
depends on at least one power, which is not much of a restric-
tion.

It should be noted that Yates’ framework of standard in-
terference functions [7] is an important special case of the
generic model A1–A4. The function I(p) is standard if one
component of p (e.g. noise) is constant and if I(p) is strictly
increasing in this component [6].

Example 1 (Linear Interference Model). A common approach
to interference modeling is the usage of linear interference
functions

Ik(p) = [V p]k, k = 1, 2, . . . ,K , (3)

where V ≥ 0 is a fixed link gain matrix containing interfe-
rence coupling coefficients. This linear function is both con-
vex and concave. It also fulfills the axioms A1–A3 so it is a
special case of the framework under investigation.

Example 2 (Spectral radius). Consider the linear model (3).
The resulting SIR region is defined as

S = {γ : λp(γ) ≤ 1} , (4)

where λp(γ) = ρ
(

diag{γ}V
)

is the spectral radius (here:
the maximum eigenvalue).

The SIR region S is a sub-level set of the function λp(γ).
This was exploited in [8–11], where the power vector was
substituted by exp{s}. The interference functions Ik(exp{s})
are log-convex. Also the spectral radius λp(exp{x}) (choo-
sing the substitution γ = exp{x) is log-convex on RK , thus
the log-SIR region log(S) is a convex set. This is a useful
property which can be exploited for resource allocation tech-
niques operating on the boundary of the region (see e.g. [5]).

The spectral radius λp(exp{x}) itself is a log-convex in-
terference function. This shows that the proposed framework
is not limited to interference in a physical sense, but it can be
applied to other types of coupled systems as well.



Moreover, properties of the interference function λp(γ)
are closely connected with properties of the level set (4). So
the analysis of interference functions can also help to better
understand QoS feasible regions.

Example 3 (Robustness). Another example is the worst-case
model

Ik(p) = max
c∈C

[V (c)p]k, ∀k , (5)

where the parameter c, chosen from a closed bounded set C,
can stand for the impact of error effects. Performing power
allocation with respect to the worst-case interference, such as
(5), guarantees a certain degree of robustness (see e.g. [12,13]
and the references therein).

Example 4 (Elementary log-convex interference function). It
was shown in [14] that every log-convex interference functi-
on has a product representation with fundamental log-convex
building blocks

I(p) = C ·
∏

l

(pl)wl , p > 0, w ∈ W , (6)

whereW = {w ≥ 0 : ‖w‖1 = 1}. This will be used later in
Section 4.

1.3. Problem Formulation and Contributions

With the above interference model, the problem of weighted
proportional fairness (1) can be rewritten as

F (α, I) = inf
p>0

K
∑

k=1

αk · log
Ik(p)
pk

. (7)

Note that the optimization is not over QoS1, . . . ,QoSK di-
rectly, as in (1), but over the transmission powers p, which
are linked to the QoS via the relation QoSk(p) = Ik/pk.
This approach is motivated by the close interaction between
physical layer and upper layers for wireless systems. For in-
stance, signal processing strategies for robustness and inter-
ference rejection (e.g. beamforming [15]) can be included in
the definition of Ik.

It can be observed from (7) that if one or more interference
values Ik(p) tend to zero, then the infimum F (α, I) tends to
minus infinity, which means that there is no proportionally
fair operating point. This leads to the following questions:

P1. Under which condition is F (α, I) > −∞?

P2. If F (α, I) > −∞ holds, then under which condition
does a p̂ > 0 exist such that

F (α, I) =
K
∑

k=1

αk · log
Ik(p̂)
p̂k

? (8)

P3. Under which condition does exactly one p̂ > 0 exist
such that (8) holds?

It will be shown in the following that problems P1–P3 are
closely connected with the following three resource allocation
problems N1–N3, where the optimization is performed with
respect to

qk(p) = log
( 1
γk(p)

)

, k = 1, 2, . . . ,K , (9)

where γk(p) is the SIR as a function of p. We can write q =
− log γ, where the logarithm is taken component-wise. Then,
γ(q) = exp(−q) is the SIR vector required to achieve certain
QoS values q. Using this definition, we can define the feasible
region

Fq = {q : C
(

γ(q)
)

≤ 1} , (10)

where C(γ) := C
(

γ(q)
)

is the min-max optimum

C(γ) = inf
p>0

(

max
k

γk · Ik(p)
pk

)

. (11)

N1. Under which condition is

inf
q∈Fq

K
∑

k=1

αkqk > −∞ ? (12)

N2. Under which condition does a q̂ ∈ Fq exist such that

K
∑

k=1

αk · q̂k = inf
q∈Fq

K
∑

k=1

αk · qk > −∞ ? (13)

N3. Under which condition does exactly one q̂ ∈ Fq exist
such that (13) holds?

In the remainder of this paper we will show in which way
P1–P3 and N1–N3 are connected. We start by analyzing pro-
blems P2 and N2 in the following section.

2. EXISTENCE OF AN OPTIMIZER

The behavior of the given problems is determined by the mul-
tiuser interference. In order to find answers, we need to spe-
cify how users are coupled by interference.

2.1. Characterization of Interference Coupling

Consider the following asymptotic characterization for inter-
ference coupling:

Definition 1. The interference coupling is characterized by
the asymptotic matrix

[AI ]kl =







1 if there exists a p > 0 such that
limδ→∞ Ik(p+ δel) = +∞

0 otherwise.
(14)



where el is the all-zero vector with the lth component set to
one.

The 1-entries in the kth row of AI mark the positions
of the power components on which Ik depends. Notice that
because of the special properties of the log-convexity of our
interference functions, we have the following result:

Lemma 1. For log-convex interference functions (properties
A1–A4) we have AI = DI , where

[DI ]kl =















1 if there exists a p > 0 such that
Ik(p+ δel) is not constant for some
values δ > 0

0 otherwise.

The dependency matrix DI can be used to characterize
the achievability of SIR targets γ. We say that γ > 0 is achie-
vable if there exists a power allocation vector p > 0 such that
SIRk(p) = qk, ∀k.

For log-convex interference functions, achievability is en-
sured by an irreducible dependency matrix DI .

Lemma 2. Let DI be irreducible, then for all γ > 0 there
exists a p > 0 such that

C(γ)pk = γkIk(p), ∀k . (15)

Note that the fixed-point characterization (15) can be re-
written as SIRk(p) = γk/C(γ) for all k = 1, 2, . . . ,K. That
is, all boundary points {γ : C(γ) = 1} can be achieved by
appropriately chosen power vectors. This result will play an
important role for the following analysis.

2.2. Proportional Fairness and Geometry of the Fq Regi-
on

In general, the problems P1–P3 and N1–N3 are not equiva-
lent, even not for the relatively simple linear case (see Ex-
ample 5). But our first theorem shows that for given interfe-
rence functions I1, . . . , IK , the set of weighting vectors α
for which P1 holds, coincides with the set of weighting vec-
tors for N1. That is, both problems have the same optimum (if
existent).

Theorem 1. For an arbitrary weighting vector α > 0,

F (α, I) = inf
q∈Fq

K
∑

k=1

αkqk . (16)

The following corollary is an immediate consequence of
Theorem 1.

Corollary 1. For an arbitrary weighting vector α > 0,

inf
p>0

K
∑

k=1

αk log
Ik(p)
pk

> −∞ ⇔ inf
q∈Fq

K
∑

k=1

αkqk > −∞

(17)

2.3. Existence of an Optimizer

If there exists a p̂ > 0 that solves P2, then q̂ = − log γ(p̂)
solves problem N2. But the converse is not true, as will be
demonstrated by the following example.

Example 5. Consider the linear model (3) with the coupling
matrix

V =





V (1) 0 0
0 0

V (1,2) V (2)



 .

The blocks on the main diagonal have the formV (1) =
[

0 ρ1
ρ1 0

]

and V (2) =
[

0 ρ2
ρ2 0

]

, where ρ1, ρ2 > 0. The off-diagonal ma-

trix V (1,2) is strictly positive. For both diagonal blocks, we
can define diagonal SIR target matrices Γ(1) =

[

γ1 0
0 γ2

]

and

Γ(1) =
[

γ3 0
0 γ4

]

. Then we have a spectral radius

ρ(ΓV ) = max
{

ρ(Γ(1)V (1)), ρ(Γ(2)V (2))
}

. (18)

Consider the first spectral radius ρ(Γ(1)V (1)), which is a root
of the characteristic polynomial λ2− γ1γ2ρ

2
1 = 0. With γk =

exp(−qk) we have

ρ(Γ(1)V (1)) = exp
(

−q1 + q2

2

)

· ρ1 .

That is,

ρ(Γ(1)V (1)) ≤ 1 ⇔ −q1 + 2 log ρ1 ≤ q2 ,

and

ρ(Γ(1)V (1)) = 1 ⇔ −q1 + 2 log ρ1 = q2 .

In analogy,

ρ(Γ(2)V (2)) = 1 ⇔ −q3 + 2 log ρ2 = q4 .

We now show that instead of minimizing over the set Fq , we
can equivalently minimize over

FEq = {q : ρ(Γ(1)V (1)) = ρ(Γ(2)V (2)) = 1} .

Generally, FEq ⊆ Fq , which follows from (18). But for arbi-
trary α > 0, we have

inf
q∈Fq

K
∑

k=1

αkqk = inf
q∈FEq

K
∑

k=1

αkqk . (19)

This can be shown by writing

inf
q∈Fq

K
∑

k=1

αkqk = inf
q∈RK :ρ(Γ(q)V )=1

∑

k

αkqk .

Now, consider a q̂ > 0 such that ρ(Γ(q̂)V ) = 1, but q̂ /∈
FEq , i.e., ρ(Γ(1)V (1)) < 1 can be assumed without loss of



generality. Because of the continuity of the spectral radius,
we can choose q̃k = q̂k −λ, k = 1, 2, with some λ > 0. With
q̃k = q̂k, k = 3, 4, we have

∑

k αk q̃k <
∑

k αk q̂k, i.e., if not
q̂ ∈ FEq , then the utility function could be further minimized,
which is a contradiction and shows (19).

Hence, we have

inf
q∈Fq

∑

k

αkqk = α1q1 + α2(2 log ρ1 − q1)+

+ α3q3 + α4(2 log ρ2 − q3)
= α22 log ρ1 + q1(α1 − α2)+

+ 2α4 log ρ2 + q3(α3 − α4) (20)

Thus,
inf
q∈Fq

∑

k

αkqk > −∞ (21)

if and only if α1 = α2 and α3 = α4.
This can be further developed. Using

∑

k αk = 1, we
have 2α1 + 2α3 = 1. That is, (21) holds if and only if α1 =
α2 and α3 = α4 with 2α1 + 2α3 = 1. Hence, there exist
infinitely many q̂ such that infq∈Fq

∑

k αkqk =
∑

k αk q̂k.
They are all contained in the setFEq . But there exists no p̂ > 0
such that q̂k = log 1

γk(p̂) . This is because p̂ would have to be
the principal right eigenvector of Γ(q̂)V . Then all maximal
blocks would have to coincide with the isolated blocks, which
does not hold for Γ(1)V (1), since V (1,2) > 0.

Example 5 has shown that a solution of N2 need not pro-
vide a solution of P2. That is, the boundary points of Fq
need not be achievable by power vectors. For general log-
convex interference functions, it is not clear which properties
the boundary points have. In this context, Lemma 2 is import-
ant since it shows that it is important to understand and exploit
properties of the interference coupling.

This result can now be used in order to characterize the
existence of an optimizer.

Theorem 2. Let DI be irreducible, and F (α, I) defined as
by (7). There exists a q̂ ∈ Fq such that

F (α,I) =
∑

k

αk q̂k

if and only if there exists a p̂ such that

F (α,I) =
∑

k

αk log
Ik(p̂)
p̂k

(22)

3. BOUNDEDNESS OF THE INFIMUM

Theorem 2 shows that if DI is irreducible, then both pro-
blems P2 and N2 are equivalent. Note, that this does not tell
us when for a given α there exists a p̂ > 0 (and thus q̂ ∈ Fq)
solving P2.

This question seems to be complicated in general. Pre-
vious investigations were confined to the case of equal weights
α = 1

K1. If, in addition, certain monotonicity properties are
fulfilled, then it can be shown that

inf
p>0

∑

k

log
Ik(p)
pk

> −∞

if and only if there exists a row permutationσ = [σ1, . . . , σK ]
such that [DI ]σk,k > 0 for all k = 1, 2, . . . ,K. The same re-
sult holds when replacing the row permutation by a column
permutation. In other words, the infimum is bounded if and
only if there exists either a row or a column permutation such
that the main diagonal of the permuted coupling matrix is
strictly positive. In addition, it can be shown that for the exis-
tence of a proportionally fair power vector it is important that
the coupling matrix is irreducible after simultaneous row and
column permutations.

However, these results cannot be transferred to the pro-
blem at hand, where we assume an arbitrary weighting vector
α > 0. This is illustrated by the following example.
Example 6. Consider linear interference functions Ik(p) =
[V p]k, k = 1, 2, 3, with an irreducible coupling matrix

V =





0 1 0
1 0 1
1 1 0



 (23)

For this matrix, we have

PF (V ) = inf
p>0

K
∑

k=1

log
[V p]k
pk

> −∞ ,

This follows from
3
∑

k=1

log
[V p]k
pk

= log
p2

p1
+ log

p1 + p3

p2
+ log

p1 + p2

p3

> log
p2

p1
+ log

p3

p2
+ log

p1

p3
= 0 .

But there is no optimizer p̂ > 0 (and thus no q̂ ∈ Fq) such
that

∑K
k=1 log [V p̂]k

p̂k
= PF (V ).

In order to show this, consider

V V T =





1 0 1
0 2 1
1 1 2





The productV V T is irreducible and the function
∑3
k=1 log [V p̂]k

p̂k
is strictly convex if we substitute p = es (see [16] and secti-
on 6).

But the infimum need not be achievable. This can be shown
by contradiction (see also [17]). Suppose that there exists a
p̂ > 0 such that the function

F (p) =
3
∑

k=1

log
[V p]k
pk

, p > 0



has a minimum at p̂. That is,

∂F (p)
∂pr

∣

∣

∣

∣

p=p̂

= 0, r = 1, . . . , 3 . (24)

Without loss of generality, we can assume
∑

k p̂k = 1. Since
Vkk = 0, ∀k, we can rewrite (24) as

1
p̂r

=
∑

l 6=r

1
[V p̂]l

Vlr, r = 1, 2, 3 (25)

We can again exploit Vrr = 0 to write

3
∑

l=1

Vlrp̂r
[V p̂]l

= 1, r = 1, 2, 3 (26)

Taking the sum over the index r instead of l yields

3
∑

r=1

Vlrp̂r
[V p̂]l

=
[V p̂]l
[V p̂]l

= 1, l = 1, 2, 3 (27)

With (26) and (27) we have six equations characterizing the
optimizer p̂. Now, we show they cannot be fulfilled for the
special matrix (23). With (27) an l = 1 we have

V12p̂2

[V p̂]1
= 1 . (28)

With (26) and r = 2 we have

V12p̂2

[V p̂]1
+
V32p̂2

[V p̂]3
= 1 . (29)

Plugging (28) in (29) we obtain

1 = 1 +
V32p̂2

[V p̂]3
.

Since p̂2 > 0 and [V p̂]3 > 0, we have V32 = 0 which is a
contradiction, thus implying that p̂ > 0 cannot exist for the
given problem, with equal weights α = 1

K1.
Example 7. However, this does not imply that no optimizer
exists for arbitrary α. For the same interference functions,
with V defined as by (23), it can be shown that there exist
weights α̂ > 0 such that

inf
p>0

3
∑

k=1

α̂k log
[V p]k
pk

> −∞

and there exists a p̂ > 0 such that

inf
p>0

3
∑

k=1

α̂k log
[V p]k
pk

=
3
∑

k=1

α̂k log
[V p̂]k
p̂k

This is a direct consequence of [18]. The matrix V is irre-
ducible, with right and left principal eigenvectors p̂ > 0 and
ẑ > 0, respectively, i.e.,

V p̂ = ρ(V )p̂ (30)

and V T ẑ = ρ(V )ẑ . (31)

Assume that
∑

k p̂kẑk = 1 and α̂k = p̂kẑk. Then for all
p > 0 holds

K
∑

k=1

α̂k log
[V p]k
pk

≥ log ρ(V ) =
K
∑

k=1

α̂k log
[V p̂]k
p̂k

,

That is, p̂ is an optimizer.
This examples show that is generally difficult to characte-

rize the existence of a proportionally fair operating point for
arbitrary α > 0. Results for equal weights cannot be imme-
diately generalized.

4. PROPORTIONAL FAIRNESS AND STRUCTURE
OF LOG-CONVEX INTERFERENCE FUNCTIONS

We now study proportional fairness from a different perspec-
tive, by exploiting the structure of log-convex interference
functions. Namely, every log-convex interference function has
a decomposition based on the elementary interference functi-
ons, which were already introduced in Example 4.

Consider the set

L(I) =
{

w ∈ RK+ : fI(w) > 0
}

, (32)

where

fI(w) = inf
p>0

I(p)
∏K
l=1(pl)wl

, w ∈ RK+ . (33)

Lemma 3. Every log-convex interference function I(p), cha-
racterized by A1-A4, with p > 0, can be represented as

I(p) = max
w∈L(I)

(

fI(w) ·
K
∏

l=1

(pl)wl
)

. (34)

Thus, we can use

K
∑

k=1

αk · log
Ik(p)
pk

= log
(∏

l

(

Ik(p)
)wl

∏

l(pl)wl

)

(35)

= log
(

Iw(p)
∏

l(pl)wl

)

(36)

The function Iw(p) is characterized by the following lemma.

Lemma 4. Let w > 0 be an arbitrary weighting vector with
∑

k αk = 1. Then,

Iw(p) =
K
∏

l=1

(

Il(p)
)wl (37)

is a log-convex interference function.

The result exploits the particular properties of log-convex
interference functions. The elementary operation (35) com-
bines log-convex interference functions and builds a new log-
convex interference function. With Lemma 3, we can now use
fIw in order to characterize when N1 and thus P1 are valid.

Lemma 4 is used to show the following result.



Theorem 3. We have F (α,I) = log
(

fIw(w)
)

. Thus,

F (α,I) > −∞ ⇔ fIw(w) > 0 . (38)

and there exists a p̂ as a solution of P2 if and only if problem
(33) has an optimizer.

It can be observed from Theorem 3 how the elementary
component fIw plays an essential role in characterizing the
existence of a supporting power allocation.

5. CONNECTION WITH GENERALIZED
CROSSTALK MATRICES

In this section, we study a further way of characterizing the
solvability of P2. Only for the sake of simplifying the dis-
cussion (see comment below), we assume that the log-convex
interference functions I1, . . . , IK are continuously differen-
tiable. Then for every index k and for every p > 0 there exists
a vector w(k) := w(k)(p), with w(k) ≥ 0, ‖w(k)‖1 = 1, and
fk(w(k)) > 0 such that

Ik(p) = fk(w(k))
∏

l

(pl)w
(k)
l (39)

Defining the matrix

W (p) = [w(1), . . . ,w(K)] (40)

we have the following result.

Theorem 4. Let I1, . . . , IK be continuously differentiable,
log-convex interference functions. For an arbitrary fixed α >
0, there exists a vector p̂ > 0 solving P2 if and only if there
exists a p̃ > 0 such that

W (p̃)Tα = α (41)

whereW (p̃) is defined by (40). Then the vector p̃ is a solution
of P2.

All matrices of the form (40) fulfill W , i.e. they are row-
stochastic with spectral radius ρ(W ) = 1. Relation (41) means
that α is the principal left-hand eigenvector of W .

The theorem shows how the solvability of P2 is coupled
with the structural properties of log-convex interference func-
tions. In principal, we just need to check whether there is
W (p) as defined by (40), which has a principal left eigen-
vector α.

Finally, it should be noted that Theorem 4 can be exten-
ded to arbitrary log-convex interference functions which are
not necessarily continuously differentiable. But this requires
techniques from semi-smooth analysis and a full discussion is
beyond the scope of this paper.

6. UNIQUENESS

We now consider problems P3 and N3. That is, we ask under
which condition an existing optimizer is unique. A sufficient
condition for uniqueness is strict convexity of the cost functi-
on in (7). In this section we will show how strictness depends
on the structure of the dependency matrix DI .

It was already shown in [19] that the cost function

f(s) =
∑

k

αk log
Ik(es)

esk
(42)

is convex for log-convex interference functions. In [16] strict
convexity was characterized for the linear interference model,
with a cost function

∑

k αk log([V p]k/pk). If V is irreduci-
ble, then f(w) is strictly convex if and only if V V T is irre-
ducible.

This result can be generalized to general log-convex inter-
ference functions defined by A1–A4. To this end, we need the
following definition

Definition 2. Assume that for two arbitrary p(1), p(2), there
exists at least one index l from the dependency set (indices for
whichDI is non-zero) such that p(1)

l 6= p
(2)
l . An interference

function I is called separating if

I
(

p(λ)
)

< I
(

p(1)
)1−λ · I

(

p(2)
)λ

(43)

That is, I(p) is strictly convex on its domain.

Theorem 5. Let I1, . . . , IK be separating interference func-
tions. The matrix DI is assumed to be irreducible. Then, the
cost function (42) is strictly convex if and only if DIDT

I is
irreducible.

If the assumptions in Theorem 5 are fulfilled, then strict
convexity of the proportional fair cost function (42) only de-
pends on the structure ofDI . Applying this result to the linear
linear model with a coupling matrix V , we see that only the
positions of the non-zero entries matter. The actual values of
the entries do not affect the strict convexity of function.

7. CONCLUSIONS

In this paper we have studied the problem of weighted pro-
portional fairness for log-convex interference functions which
are defined by an axiomatic framework. The advantage of the
axiomatic approach is it generality and flexibility. By mode-
ling the QoS as a function of the transmission powers, it is
easy to include physical layer techniques for robustness and
interference reduction.

But this chosen parameterization complicates the task of
resource allocation. The examples in this paper illustrate ca-
ses for which the given optimization problem has no solution.
Whether or not such effects occur depends on the interference
coupling structure of the system. In this paper, we show that



these effects largely depend on the structure of the dependen-
cy matrixDI .

Some application examples (power control, robustness)
have already been discussed in the paper. But the chosen axio-
matic framework is very general, so the results are not restric-
ted to wireless communications.
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