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ABSTRACT

Many problems in wireless communications (e.g. multiuser
beamforming or robust power allocation) can be traced back
to convex or concave interference functions. While fixed-
point iterations are available for general standard interference
functions, a better, super-linear convergence behavior can be
achieved by exploiting convexity. In this paper we show that
that every convex (resp. concave) interference function can
be expressed as an optimum over elementary linear functions
weighted by coefficients. Based on this representation, both
transmit powers and coefficients can be optimized iteratively.
The proposed framework also shows a connection between in-
terference functions and feasible regions. Furthermore, every
convex or concave interference function can be interpreted as
an optimum over a sub-level set.

1. AXIOMATIC INTERFERENCE MODEL

Axiomatic frameworks have a longstanding tradition in com-
munication theory. A well-known example is the axiomatic
framework for power control introduced by Yates [1], who
proposed to characterize the multiuser interference coupling
by means of interference functions I1(p), . . . IK(p), for K
communication links in a multiuser system. The function
Ik(p) yields the interference power of the kth user caused
by the vector of transmission powers p = [p1, . . . , pK ]T . The
way how Ik(p) depends on p is only characterized by certain
properties, like positivity, monotonicity, scalability [1].

This framework was recently generalized in [2]. In this
work, a function I : RK+ 7→ R+ is called an interference
function if the following axioms are fulfilled.
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A1 I(p) ≥ 0
A2 I(αp) = αI(p) for α > 0
A3 I(p) ≥ I(p′) if p ≥ p′ .

Note, that an interference function characterized by A1–A3
can be ‘standard’ as defined in [1]. Assume that I(p) is
strictly monotone with respect to one component of p. This
component could be a fixed noise power, for example. Then
I(p) is standard with respect to the remaining components
[2].

In this paper we do generally not require I(p) to be stan-
dard (except for some application examples). Instead, we fo-
cus on another interesting property: It is assumed that I(p)
is convex or concave. This property appears in many prac-
tically relevant contexts, some of which will be discussed in
the following section.

Notational conventions are: Matrices and vectors are de-
noted by bold capital letters and bold lowercase letters, re-
spectively. Let y be a vector, then yl = [y]l is the lth compo-
nent. Likewise, Amn = [A]mn is a component of the matrix
A. The notation y ≥ 0 means that yl ≥ 0 for all compo-
nents l. y ≥ x means component-wise inequality. x ◦ y
denotes element-wise multiplication of vectors or matrices
(Hadamard product). The set of non-negative reals is denoted
as R+. The set of positive reals is denoted as R++.

2. CONVEX/CONCAVE INTERFERENCE
FUNCTIONS

We start with a few examples.

Example 1 (Linear Interference Model). A common approach
to interference modeling is the usage of linear interference
functions

Ik(p) = [V p]k, k = 1, 2, . . . ,K , (1)



where V ≥ 0 is a fixed link gain matrix containing interfer-
ence coupling coefficients. This linear function is both con-
vex and concave. It also fulfills the axioms A1–A3 so it is a
special case of the framework under investigation.

The model (1) has been widely investigated and many in-
teresting properties were derived, some of which can be di-
rectly connected to convexity. For example, Ik(exp{s}) is
log-convex on RK with the substitution p = exp{s}. This
property was exploited in [3–6], where it was shown that the
resulting log-SIR region, i.e., the set of jointly achievable
signal-to-interference ratios pk/Ik(p) , is convex. This is
a useful property which can be exploited for resource alloca-
tion techniques operating on the boundary of the region (see
e.g. [7]).

Example 2 (MMSE beamforming). Model (1) can be extended
by assuming that the interference coupling V depends on
adaptive receive beamforming vectorsu1, . . . ,uK , with ‖u‖ =
1. In this case, the normalized coupling matrix V (u) is de-
fined as

[V (u)]kl =

{

uHk Rluk
uHk Rkuk

l 6= k ,

0 k = l .

where Rl = E[hlhHl ] is the spatial covariance matrix of the
vector channel hl containing the complex path attenuations
between the lth transmitter and the receiving antenna array. If
hl is deterministic (perfect channel information), then Rl =
hlh

H
l .
Under this model, we have an interference function

Ik(p, σ2
n) = min

‖uk‖=1

[

V (u) · p
]

k
+

σ2
n

uHk Rkuk
. (2)

It can be verified that (2) fulfills A1–A3 and is concave, since
concavity is preserved under minimization. The SIR1 has the
well-known form

SIRk(p, σ2
n) =

pk
Ik(p, σ2

n)

= max
‖uk‖=1

pk · uHk Rkuk

uHk

(

∑

l 6=k plRl + σ2
nI
)

uk
. (3)

Note, that the Ik only depends on the kth row of V (u). That
is, for an arbitrary power vector p > 0, optimum beamform-
ers u1, . . . ,uK can be found independently, as the princi-
pal generalized eigenvectors of the respective matrix pairs
(Rk,

∑

l 6=k plRl), for all k = 1, . . . ,K. These beamform-
ers maximize the individual SIR of all K users, so they are
optimal linear MMSE equalizers (normalized to unit norm).

Example 3 (Transmit beamforming). It was shown in [8–10]
that the same model (2) can be used in order to jointly opti-
mize K transmit beamformers for a downlink channel. This

1In case of the model (2), the ratio pk/Ik(p, σ2
n) is often denoted as

signal-to-interference-plus-noise ratio (SINR), but in order to keep the nota-
tion consistent, we prefer to use SIR instead. This notation is also commonly
used, e.g. in the context of CDMA receiver design.

approach is based on the duality between the uplink interfer-
ence coupling characterized by V (u) and the downlink cou-
pling characterized by the transpose V (u)T . This is an exam-
ple where the framework of interference functions can also be
successfully applied to the optimization of transmitters. This
is not always possible, e.g. if neither rows nor columns of
V (u) can be optimized independently.

Example 4 (Zeroforcing beamforming). Since the SIR (3) is
invariant with respect to a scaling ofuk, we can as well choose
the normalization uHk Rkuk = 1. Then, the interference
function becomes

Ik(p, σ2
n) = min

uHk Rkuk=1

[

V (u) · p
]

k
+ σ2

n · ‖uk‖2 . (4)

Assuming that K is less or equal to the number of antennas,
we can further constrain the set of beamformers by requiring
uHk hl = 0, l 6= k. This leads to a complete elimination of the
interference, and only the effective noise term remains. We
have a new interference function

Ik(p, σ2
n) = min

uHk Rkuk=1

uHk hl=0,l 6=k

‖uk‖2 · σ2 . (5)

The optimal zeroforcing beamformers solving (5) are obtained
by a least squares approach: The beamformer uk is given as
the kth row of the pseudo-inverse H†.

This function (5) fulfills A1–A3, so it is an interference
function. But it does actually not deserve this name since it is
simply a linear function of the noise power σ2

n. But the exam-
ple illustrates how additional constraints can be added without
altering the fundamental properties A1–A3. Also concavity is
preserved. Further examples for additional constraints can be
found, e.g., in [11].

Example 5 (Base station assignment). The above models can
be further extended by allowing the receiver to make a choice
between different propagation paths of the channel. For ex-
ample, consider the problem of combined beamforming and
base station assignment [8,12–14]. The basic idea is to choose
from a set of possible receivers (base stations) the one with
the best link quality. Consider an uplink system with receiv-
ing base stations from a set B. For the kth user, the system
can choose an assignment bk ∈ Bk. The assignment bk is the
index of the base station which is to receive the signal. Then
R

(bk)
l is the covariance of the channel between the lth trans-

mitter and the receiving antenna array which consists of all
antennas belonging to base station bk.

Since the choice of the receiving base station does not in-
fluence the interference of other users, we can optimize the
assignments independently for all K communication links:

Ik(p, σ2
n) =

min
bk∈Bk

(

min
uk:‖uk‖=1

uHk
(∑

l 6=k plR
(bk)
l + σ2

nI
)

uk

uHk R
(bk)
k uk

)

. (6)



Since minimization preserves concavity, this is a concave in-
terference function which fulfills A1–A3.

Note that a signal can be jointly received and coherently
combined by several base stations. In this case, bk is an as-
signment vector. Such a cooperation further increases the
performance and helps mitigating inter-cell interference. The
disadvantage is an increased signaling overhead and the need
for synchronization.

Example 6 (Generic Receiver Optimization). The above ex-
amples all have a similar structure. They can be seen as spe-
cial cases of the generic model

Ik(p) = min
zk∈Zk

[

V (z) · p
]

k
, k = 1, 2, . . . ,K , (7)

where zk is a receive strategy chosen from a closed bounded
setZk. The coupling matrixV (z) depends on z = (z1, . . . , zK)
in a row-wise fashion (or column-wise if duality is used).
That is, the kth row of V (z) only depends on zk. Also, Zk
must be such that the minimum exists (e.g. continuous).

This notion of a receive strategy is quite abstract, and it in-
cludes all the previous examples as special cases. This gener-
alization was proposed in [2,15,16]. It can be verified that (7)
is a concave interference function which fulfills A1–A3. If, in
addition, one component of p stands for constant noise, and
if Ik(p) is strictly monotone in this component (which is typ-
ically fulfilled in practical systems), then the problem of min-
imizing the total power subject to individual SIR constraints
can be solved with super-linear convergence speed [17, 18].
Of course, the same holds for the previous examples of beam-
forming and base station assignment, which are special cases
of the generic model (7).

One main contribution of this paper will be to show that
these results can even be further generalized. In fact, every
concave interference function has a matrix-based structure
like (7). This reveals that concavity is one of the fundamental
underlying properties that enables such an excellent conver-
gence behavior, as observed in the beamforming context [10].

Example 7 (Robustness). Another example is the worst-case
model

Ik(p) = max
c∈C

[V (c)p]k, ∀k , (8)

where the parameter c, chosen from a closed bounded set C,
can stand for the impact of error effects. Performing power
allocation with respect to the worst-case interference, such as
(8), guarantees a certain degree of robustness (see e.g. [19,20]
and the references therein).

The functions (8) are convex and fulfill A1–A3. If one
component of p stands for constant noise power, and if Ik(p)
is strictly monotone with respect to this component, then the
problem of SIR-constrained power minimization can be solved
with super-linear convergence [21]. Amongst other proper-
ties, this convergence behavior is enabled by convexity. One
main contribution of this paper is to show that every convex
interference function has a matrix-based structure (8).

These examples show that many problems in wireless com-
munications are based on convex (resp. concave) interference
functions. Efficient resource allocation algorithms are avail-
able for this type of interference model.

In the remainder of the paper it will be shown that every
convex/concave interference function characterized by A1–
A3 can be represented as an optimum over linear elementary
functions. We start by analyzing the concave case in the next
section.

3. STRUCTURE RESULT

In this section we show that every convex/concave interfer-
ence functions can be decomposed into linear elementary func-
tions.

3.1. Concave Functions

Consider a concave interference function I(p), characterized
by A1–A3. A useful concept for analyzing concave/convex
functions is the conjugate function [22]

I∗(w) = inf
p>0

(
K
∑

l=1

wlpl − I(p)
)

. (9)

The special properties A1–A3 lead to the following result:

Lemma 1. The conjugate function (9) is either minus infinity
or zero, i.e.,

I∗(w) > −∞ ⇔ I∗(w) = 0 (10)

In the following section we will use the conjugate func-
tion and Lemma 1 to show that every concave interference
function can be represented in matrix-form.

We know from Lemma 1 that the set of vectors w which
lead to a finite conjugate I∗(w) > −∞ is

N0(I) = {w ∈ RK+ : I∗(w) = 0} . (11)

The following result shows that every w ∈ N0(I) is associ-
ated with a hyperplane which upper bounds the interference
function.

Lemma 2. For all w ∈ N0(I), we have

I(p) ≤
∑

l

wlpl , ∀p > 0 . (12)

This leads to the first main result, which shows that con-
cave interference functions can always be characterized as the
minimum sum of weighted powers.

Theorem 1. Let I be an arbitrary concave interference func-
tion, then

I(p) = min
w∈N0(I)

K
∑

k=1

wkpk , for all p > 0. (13)



Theorem 1 shows that an arbitrary concave interference
function I can be characterized as the minimum of a weighted
sum of powers, optimized over the set N0(I). We will now
further analyze the relationship between I and N0(I).

Lemma 3. Let I be a concave interference function, then the
set N0(I) ⊂ RK+ is closed convex.

The set N0(I) can be further characterized:

Lemma 4. Assume there exists a ŵ ∈ N0(I), then every
w ≥ ŵ is contained in N0(I), as illustrated in Fig 1.

w2

w1

ŵ

N0(I)

Fig. 1. Illustration of the monotonicity property stated by
Lemma 4

Thus far, we have focused our attention on the interfer-
ence function I. From Lemmas 3 and 4 we know that every
concave interference function is associated with a set with the
described properties.

Now, we show the converse, namely that every such set is
uniquely associated with a concave interference function. To
this end, consider a closed convex set V with the scaling prop-
erty stated in Lemma 4. For this set we define the interference
function

IV = min
w∈V

∑

l

wlpl (14)

It can be verified that the function IV is concave and fulfills
the properties A1–A3. The following result shows that there
is a one-to-one relationship between every concave interfer-
ence function I and the convex set N0(I).

Lemma 5. Let V be a closed convex set, with the monotonic-
ity property stated in Lemma 4, then

V = N0(IV) (15)

This can be further extended:

Corollary 1. Let N (1) and N (2), be two arbitrary closed
bounded convex sets, with the monotonicity property stated
in Lemma 4. If IN (1)(p) = IN (2)(p) for all p > 0, then
N (1) = N (2).

These results allow for an interesting interpretation. Each
concave interference function I is uniquely associated with a
convex set N0(I), over which we minimize a weighted “cost

function”
∑

k wkpk. This is a familiar problem, which oc-
curs for example in the context of network resource alloca-
tion. Suppose that wk stands for some QoS measure, like bit
error rate, or delay. For certain choices of system parameters
the QoS region is convex (see e.g. [23]). The weights pl can
be chosen so as to reflect certain priorities among the users.
Then, I(p) is the minimum network cost obtained by opti-
mizing over the boundary of the QoS region N0(I), as illus-
trated in Fig. 2. This shows the close connection between the

w1

p

w2

region N0(I)

Fig. 2. The concave interference I(p) is the minimum of a
weighted cost function optimized over the convex setN0. For
each p a different optimum is obtained.

axiomatic interference theory and resource allocation prob-
lems.

3.2. Convex Functions

Now, similar properties will be shown for a convex interfer-
ence function I(p). Most results are in analogy to the con-
cave function. However, there are slight differences, which
will be pointed out in the following.

The conjugate function for the convex case is [24]

Ī∗(w) = sup
p>0

(
K
∑

l=1

wlpl − I(p)
)

. (16)

As for the concave function, we have the following result:

Lemma 6. The conjugate function (16) is either infinity or
zero, i.e.,

Ī∗(w) < +∞ ⇔ Ī∗(w) = 0 . (17)

The following set contains all w for which the conjugate
function (16) is finite.

W0(I) = {w ∈ RK+ : Ī∗(w) = 0} (18)

Each w ∈ W0(I) is associated with a hyperplane which
lower bounds the interference function.

Lemma 7. For each w ∈ W0(I),

K
∑

l=1

wlpl ≤ I(p) , ∀p > 0 . (19)



Using this result, it can be shown that a convex interfer-
ence function can always be characterized as the maximum
sum of weighted powers.

Theorem 2. Let I be an arbitrary convex interference func-
tion, then

I(p) = max
w∈W0(I)

K
∑

k=1

wk · pk , for all p > 0. (20)

We now study the properties ofW0(I).

Lemma 8. Let I be a convex interference function, then the
setW0(I) ⊂ RK+ is closed bounded convex.

Lemma 9. Assume there exists a ŵ ∈ W0(I), then every
w ≤ ŵ is contained inW0(I), as illustrated in Fig 3.

w2

W0(I)

w1

ŵ

Fig. 3. Illustration of the monotonicity property stated by
Lemma 9

The results show that every convex interference function
I can be interpreted as the maximum of the linear function
∑

l plwl over a closed bounded convex set W0(I). Con-
versely, if V is a closed bounded convex set, with the mono-
tonicity property stated by Lemma 9, then the function

IV(p) = max
w∈V

∑

l

plwl (21)

is a convex interference function which fulfills A1–A3. Thus,
there is a one-to-one relationship between convex interference
functions and closed bounded convex sets characterized by
Lemma 9. This is specified by the following theorem.

Lemma 10. Let V be a closed bounded convex set, with the
monotonicity property stated in Lemma 9, then

V =W0(IV) (22)

In analogy to the concave case, the convex interference
function can be interpreted as the maximum of a weighted
utility function optimized over the convex set W0, as illus-
trated in Figure 4.

W0(I)

p

w1

w2

Fig. 4. The convex interference I(p) is the maximum of a
weighted utility function optimized over the convex set W0.
For each p a different optimum is obtained.

4. CONNECTION BETWEEN INTERFERENCE
FUNCTIONS AND LEVEL SETS

In the previous section it was shown that every convex in-
terference function can be characterized as a maximum of a
linear function. The maximization is over a convex set.

Conversely, a convex interference function is obtained from
an arbitrary closed bounded convex setW with the described
monotonicity property. It was already mentioned that the set
W can be interpreted as a quality-of-service (QoS) region,
over which we wish to maximize a utility function

f(p) = max
q∈W

K
∑

k=1

pkqk . (23)

Here, the weights p = [p1, . . . , pK ] stand for individual user
priorities, which possibly depend on queue lengths, etc. By
appropriately choosing p it is possible to trade off throughput
against fairness.

It can be observed that the convex function f(p) fulfills
the axioms A1–A3, thus f(p) itself is a convex “interference
function”. This is another example, which shows that the pro-
posed axiomatic framework has an importance beyond power
allocation.

Now, consider an arbitrary convex interference function
I(p). We know from the previous results that I is associated
with a convex set V such that

I(p) = max
v∈V

K
∑

k=1

vkpk . (24)

Now, an interesting question is whether the set V can also be
interpreted as level set. As an example, consider the linear
interference model introduced in Example 1. The SIR region
associated with theseK interference functions is the sub-level
set

S = {γ = [γ1, . . . , γK ] : ρ(γ) ≤ 1} ,

where ρ(γ) is the spectral radius (maximal eigenvalue) of the
matrix diag{γ}V . The indicator function ρ(γ) is an interfer-



ence function itself. We have

ρ(γ) = min
γ̂∈S

max
1≤k≤K

γk
γ̂k

. (25)

Consider again the convex function I(p), which is associated
with the convex set V . Also I(p) has a min-max represen-
tation of the form (25), with a sub-level set defined by an
indicator function I(p). But I(p) is also convex, so it can
be expressed as (24). However, this representation is based
on the convex set V , with the monotonicity property: v ≤ v̂,
with v̂ ∈ V , implies v ∈ V .

In order to show the connection to sub-level sets, we in-
troduce

L(I) = {p̂ > 0 : I(p̂) ≤ 1} (26)

L(I) = {p̂ > 0 : I(p̂) ≥ 1} (27)
(28)

It can be observed that the set L(I) has monotonicity
properties like V . It is also closed convex. The function

I1(p) = max
v∈L(I)

∑

k

vkpk (29)

is also a convex interference function.
Now, an interesting question is how the set V is related

to L(I). Generally, one might expect that both sets can be
different. The answer is provided by the following theorem.

Theorem 3. Let I be a convex interference function (24), syn-
thesized from a closed convex set V . Also, V has the following
monotonicity property: if v ≤ v̂, with v̂ ∈ V , then v ∈ V .
Let I1 be defined as by (29), then

V = L(I1). (30)

Next, consider a concave interference function I. There
exists a closed convex set V , with the monotonicity property
p ≥ p̂, p̂ ∈ V implies p ∈ V , such that

I(p) = min
v∈V

∑

k

vkpk (31)

In analogy, the set L(I) has the same properties as the set V .
A concave interference function is defined by

I2(p) = min
v∈L(I)

∑

k

vkpk (32)

For the set V , we have the following connection:

Theorem 4. Let I be a concave interference function and
V the set in the representation (31) with the aforementioned
monotonicity property, then V = L(I1).

Theorems 3 and 4 allow for an interesting interpretation
in terms of achievable regions. We have V = L(I1), thus
the optimization (24) can be regarded as the optimization of
the network utility

∑K
k=1 vk · pk over the “feasible region”

{p : I1(p) ≤ 1}. Here, I1(p) can be seen as an indica-
tor function depending on certain system parameters p val-
ues. A similar interpretation holds for concave interference
functions. That is, concave/convex interference functions also
have an interpretation in terms of an optimization over a level
set. But in contrast to the general case, a linear elementary
function can as well be used.

5. ALGORITHM

We can exploit that every concave (resp. convex) interference
function can be expressed as (13) or (20), respectively. As-
sume that the first K ′ = K − 1 powers are caused by users
with arbitrary concave interference functions I1, . . . , IK′ . The
last power component pK = σ2

n is constant noise. All func-
tions I1, . . . , IK′(p) are strictly monotonic with respect to
pK . We are interested in the global power minimum

min
p>0:pK=σ2

n

K′
∑

k=1

pk s.t. pk ≥ γkIk(p), k = 1, 2, . . . ,K ′ ,

(33)
where γk is a target SIR. Collecting all targets in a matrix
Γ = diag{γ1, . . . , γK′}, the global optimum of (33) is found
by the following iteration:

p̄(n+1) = σ2
n

(

Γ−1 −A(n)
)−1

b(n) (34)

w
(n)
k = arg min

wk∈N0(Ik)

wT
k

[

p̄(n)

σ2
n

]

, k = 1, 2, . . .K ′ (35)

where A(n) is the first K ′ ×K ′ block of the K ′ ×K matrix
[w1, . . . ,wK′ ]T . The vector b(n) is the last column of this
matrix. The vector p̄ contains theK ′ powers of the users. The
following result is an immediate consequence of the results
in [17, 18].

Theorem 5. The sequence p(n) obtained by the iteration (34)
has super-linear convergence.

For convex functions, the algorithm is the similar, except
that min is replaced by max. In this case, W0(Ik) (defined
in analogy) models possible interference uncertainties. Then
minimizing the total power subject to pk/Ik(p) ≥ γk guar-
antees a certain degree of robustness.

6. CONCLUSIONS

Convex and concave interference functions have been shown
to play a central role in the context of resource allocation
for wireless communication systems. One well-known exam-
ple is the problem of combined multiuser beamforming and



power control, also known as space-division-multiple-access
(SDMA).

In this paper we show two fundamental properties: Firstly,
every convex interference function can be expressed as a max-
imum over linear elementary functions. This has an interest-
ing interpretation in terms of a weighted network utility opti-
mization, which is optimized over a convex set (the “feasible
region”). Likewise, every concave interference function can
be expressed as minimum over linear elementary functions.
For this case, there is an analogy with the minimization of a
weighted network cost function.

Secondly, it is shown that every convex (resp. concave)
interference function can be interpreted as an optimum over a
level set. This provides a link to results in resource allocation
theory, where the QoS region is often expressed as a level set
depending on an indicator function for feasibility.
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