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ABSTRACT

We propose a new approach to computing the perturbation
signal for the vector broadcast channel with modulo receivers.
Since the optimumvector precoding(VP) has prohibitive
complexity, we focus on successive precoding, also known
asTomlinson Harashima precoding(THP). The performance
of THP strongly depends on the precoding order which is usu-
ally optimized for a block of symbols. We show that a large
part of the performance loss of THP compared to VP is caused
by the precoding order and not by the successive computa-
tion of the perturbation signal. Based on the observation that
especially the index of the data stream precoded last affects
the performance of THP, we develop a new variant of THP
with a complexity polynomial in the number of receivers that
computes the precoding order per symbol and leads to results
very close to those of VP which has a complexity exponential
in the number of receivers.

1. INTRODUCTION

When the decentralized receivers in the vector broadcast setup
are equipped with modulo operators, the transmitter has the
freedom to add a perturbation signal to the data signal prior
to the linear transformation which gives the transmit signal.
These degrees of freedom due to the modulo operators are op-
timally utilized by VP [1, 2] which finds the perturbation sig-
nal by a complete closest point search in a lattice. The compu-
tation of the linear transformation necessary for VP only has
to be performed once per block of symbols and has the same
complexity as that for linear precoding (e.g., [3, 4]). Since
the closest point search in a lattice has a complexity exponen-
tial in the dimensionality of the lattice (e.g., [5]), VP has a
per-symbol complexity that is exponential in the number of
receivers and is thus prohibitive.

In the case of THP, the elements of the perturbation signal
are computed successively by means of a feedback loop with
a modulo operator [6, 7, 8, 9, 10]. Due to the successive com-
putation, THP strongly depends on the precoding order (e.g.,
[7, 8, 9]) which is computed once per block of symbols based
on an assumption on the statistics of the output signal of the
transmitter’s modulo operator (e.g., [10]). The perturbation

signal of THP is inferior to that found by VP because of the
successive nature of THP. However, THP has a substantially
lower complexity per symbol than VP, as the application of
the THP filters has a complexity quadratic (polynomial) in
the number of receivers. In [8], an algorithm for the compu-
tation of the THP filters was presented which has the same
order of complexity as that of linear precoding.

Our approach to THP is different. We do not compute the
precoding order once per block of symbols. Instead, we pro-
pose to compute the precoding order for every data symbol
separately, since the transmitter knows the data signal. Moti-
vated by the result that especially the index of the data stream
precoded last has a strong influence on the performance of
THP (e.g., [8]), we propose the following procedure per data
vector. For all possible values of the index of the data stream
which is precoded last, we compute the MSEs of THP for the
given data vector. Then, the transmit signal for that particular
data vector is computed based on the precoding order leading
to the minimum MSE.

After introducing the system model in Section 2, we re-
view VP and standard THP based on theminimum mean
square error(MMSE) criterion in Sections 3 and 4, respec-
tively. The proposed THP with a precoding order optimized
symbol-wise is presented in Section 5 and the complexity
of the investigated precoding schemes is discussed in Sec-
tion 6.1. The simulation results in Section 6 show that the
performance of our symbol-wise optimized THP is close to
that of VP.

Notation: Vectors and matrices are denoted by lower
case bold and capital bold letters, respectively. We useE[•],
Re(•), Im(•), tr(•), (•)T, (•)H, and‖ • ‖2 for expectation,
real part of the argument, imaginary part, trace of a matrix,
transposition, conjugate transposition, and Euclidian norm,
respectively. The floor operator, which gives the largest inte-
ger smaller than or equal to the argument, is denoted byb•c.
All random sequences are assumed to be zero-mean and sta-
tionary. The covariance matrix of the vector random process
x[n] is denoted byRx = E[x[n]xH[n]], whereas the vari-
ance of the scalar random processy[n] is σ2

y = E[|y[n]|2].
TheN × N identity matrix isIN , its i-th column isei. We
use0N×M and0N for theN ×M zero matrix and theN -
dimensional zero vector, respectively.
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Fig. 1. System Model with Modulo Receivers.

2. SYSTEM MODEL

A perturbation signala[n] ∈ M
B is added to the data sig-

nal s[n] = [s1[n], . . . , sB[n]]T, wheresb[n] ∈ A is the
data stream for receiverb. The sumd[n] is linearly trans-
formed byT ∈ CN×B to get the transmit signaly[n] ∈ CN

(see Fig. 1). The modulation alphabet isA and the lat-
tice [11] corresponding to the receivers’ modulo operators
Mod(x) = x − τbRe(x)/τ + 1/2c − j τbIm(x)/τ + 1/2c
is denoted byM = τZ + j τZ. The fundamental Voronoi
region of M is V, i.e., Mod(•) ∈ V. To avoid ambigu-
ities, we require that the modulo constantτ is sufficiently
large to ensure thatA ⊂ V (e.g., [12]). For notational
brevity, the modulo operators of all receivers are comprised
in M(•) ∈ V

B which is defined element-wise, i.e.,M(x) =
[Mod(x1), . . . ,Mod(xB)]T, wherexk is thek-th element of
the vectorx ∈ CB.

The transmit signaly[n] propagates over the channel
HB×N , of which theb-th row is the vector channel from the
N channel inputs to receiverb, and is perturbed by the addi-
tiveB-dimensional noise signalη[n] = [η1[n], . . . , ηB [n]]T,
whereηk[n] ∈ C denotes the noise of receiverk. The result-
ing received signals are weighted with the scalarg ∈ R+,
common to all receivers, to obtain the modulo inputs (see
Fig. 1) which are collected in̂d[n] = [d̂1[n], . . . , d̂K [n]]T ∈
CB with d̂k[n] for receiverk. The modulo operators’ outputs
ŝ[n] ∈ VB are mapped to the modulation alphabetA by the
quantizerQ(•).

The data signals[n] is the desired signal for̂s[n]. Since a
shift of the input of the modulo operatorM(•) by any element
of M

B does not change the outputŝ[n], the transmitter has the
freedom to use

d[n] = s[n] + a[n] (1)

with a[n] ∈ M
B as the desired signal for the modulo inputs

d̂[n] = gHTd[n] + gη[n]. (2)

Note that we assume that the channelH is known to the trans-
mitter and constant over a block ofNB symbols. Thus, our
formulation is based on time averages overNB symbols.

3. VECTOR PRECODING

The VP filters and the VP perturbation signal result from fol-
lowing MMSE optimization

{TVP, gVP,aVP[n]} = argmin
{T ,g,a[n]}

ε(T , g,a[n])

s.t.:
NB∑
n=1

E
[‖y[n]‖2

2
∣∣ s[n]] = Etx

(3)

with the MSE which is conditioned on the known data signal

ε(T , g,a[n]) =
NB∑
n=1

E
[
‖d[n]− d̂[n]‖2

2
∣∣ s[n]] . (4)

The filters can be readily obtained with the method of La-
grangian multipliers and can be expressed as (see [2])

TVP = 1
gVP
HHΦ−1 and

gVP =

√∑NB

n=1 d
H
VP[n]HHHΦ−2dVP[n]

Etx

(5)

withΦ =HHH+ξIB andξ = tr(Rη)/Etx. By substituting
above filter solutions into the costε(T , g,a[n]) of (3), we find
the rule for the computation of the perturbation signal

aVP[n] = argmin
a[n]∈MB

ξ(s[n] + a[n])HΦ−1(s[n] + a[n]). (6)

With the Cholesky factorizationΦ = UUH, we can see that
(6) is a closest point search in a lattice, i.e., we try to find the
coordinates (element ofMB) for the point of the lattice with
the generator matrixτU−1 lying closest to−U−1s[n]. This
problem can be efficiently solved with the Schnorr-Euchner
algorithm [13]. However, the problem (6) is NP-hard (e.g.,
[5]) and is therefore impractical.

4. TOMLINSON HARASHIMA PRECODING

The Cholesky factorization with symmetric permutation

ΠΦ−1ΠT = LHΛL (7)

whereΛ is a diagonal matrix andL is unit lower triangular,
enables the factorization of the precoding filterT as

T = P (IB − F )−1Π (8)

with

P = g−1HHΠTLHΛ and

F = IB −L−1.
(9)

The permutation matrixΠ =
∑B
i=1 eie

T
bi

fulfills Π−1 =
ΠT andbi ∈ {1, . . . , B} is thei-th element of theB-tuple
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Fig. 2. Decomposition of Precoding Filter.

O = (b1, . . . , bB) which we call precoding order. The de-
composition in (8) leads to the structure of the transmitter in
Fig. 2, since the feedback structure withF is an implementa-
tion of (IB − F )−1. The symmetrically permuted Cholesky
factorization (7) can also be used to rewrite (6):

aVP[n] = argmin
a[n]∈MB

ξ
∥∥∥Λ1/2LΠ(s[n] + a[n])

∥∥∥2

2
.

We see thatLΠ(s[n] +a[n]) is a by-product of above lattice
search. Therefore, we only need to compute the filterPVP

and notTVP for VP,1 since for the input signalv[n] ofPVP we
have (see Fig. 2)

v[n] = (IB − F )−1Π(s[n] + a[n]) = LΠ(s[n] + a[n]).
(10)

Thus, the rule for the perturbation signal (6) can be rewritten
as

aVP[n] = argmin
a[n]∈MB

ξ
∥∥∥Λ1/2v[n]

∥∥∥2

2
. (11)

Note thatE[‖d[n]− d̂[n]‖2
2 | s[n]] = ξvH[n]Λv[n], since the

cost of (6) is equal to the conditioned MSE of then-th data
symbol.

To avoid the high computational complexity of the lat-
tice search (6), we can exploit the lower triangular struc-
ture ofL and use the heuristic of computing the elements
of a[n] successively, i.e.,abi [n] is computed for given
ab1 [n], . . . , abi−1 [n] minimizing thei-th summand instead of
the whole sum of the Euclidian norm:

asucc,bi [n] = argmin
a∈M

ξ
∣∣∣eT
i Λ

1/2L(Πs[n] + a′[n])
∣∣∣2 (12)

with a′[n] = [asucc,b1 [n], . . . , asucc,bi−1 [n], a,×, . . . ,×]T.
Note that the entries ‘×’ are arbitrary due to the structure of
L. Let λi,i denote thei-th diagonal element ofΛ. Then, we
have that

eT
i Λ

1/2L =
√
λi,ie

T
i L =

√
λi,i
(
eT
i + eT

i L− eT
i

)
=
√
λi,ie

T
i +
√
λi,ie

T
i (IB −L−1)L.

Therefore, above rule (12) for the successive computation of
the perturbation signala[n] can be rewritten as [see also (9)
and (10)]

asucc,bi = argmin
a∈M

ξλi,i
∣∣sbi [n] + a+ eT

i Fv[n]
∣∣2

= −Q
M

(
sbi [n] + eT

i Fv[n]
)
. (13)

1To save the complexity of computing the inverse ofΦ, we have to use
the Cholesky factorizationΦ = L′Λ′L′,H for VP. Consequently,L, Λ, and
Π must be replaced withL′,−1, Λ−1, andIB , respectively.
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Fig. 3. Transmitter of Tomlinson Harashima Precoding.

Here, the quantizer to the closest lattice point ofM is denoted
by Q

M
(•) which can be expressed by means of the modulo

operatorMod(•) asQ
M

(x) = x −Mod(x) for anyx ∈ C.
Hence, the permuted perturbation signal reads as

Πasucc[n] = M (Πs[n] + Fv[n])−Πs[n]− Fv[n].

With this result, we get for the output of the feedback loop

v[n] =Πs[n] +Πa[n] + Fv[n]
= M (Πs[n] + Fv[n]) .

We see that the addition of the successively computed pertur-
bation signal can be replaced by a modulo operator inside the
feedback loop as depicted in Fig. 3 which is the model for the
transmitter of THP used in [8, 10]. As the expressions for the
filters in (9) are the same as those found for THP based on the
MMSE criterion in [8], we can conclude that the only differ-
ence of VP and THP is the computation of the perturbation
vector. VP performs the complete lattice closest point search
(6) to find the perturbation vector, whereas THP employs the
heuristic of a successive computation [see (12)].

4.1. Block-Wise Precoding Order Computation

The choice of the permutation matrixΠ which depends on
the precoding orderO strongly affects the MSE achieved
by the successive computation (12) compared to (6). The
straightforward approach to find the optimum precoding order
for THP is to try out allB! possible orders for every data vec-
tor s[n]. But since the resulting computational complexity is
even higher than for VP, another heuristic is usually employed
for THP. First, the precoding order is computed based on
an average argument, i.e., the unconditioned transmit power
E[‖y[n]‖2

2] and the unconditioned MSEE[‖d[n]−d̂[n]‖2
2] are

respectively used instead of the conditioned transmit power
E[‖y[n]‖2

2 | s[n]] and MSEE[‖d[n]− d̂[n]‖2
2 | s[n]]:

E
[‖y[n]‖2

2
]

= tr
(
PRvP

H) and (14)

E
[
‖d[n]− d̂[n]‖2

2

]
= ξ E

[
‖Λ1/2v[n]‖2

2

]
= ξ tr (ΛRv) ,

where we used the result in (11) to obtain the expression for
the unconditioned MSE. Second, the approximate statistical
properties of the signalv[n] are exploited (see [14, Theo-
rem 3.1]):

Rv = diag(σ2
s , σ

2
v, . . . , σ

2
v), (15)



i.e., the outputv[n] of the modulo operator has uncorrelated
entries. Since the first symbol is not affected by the modulo
operator due toA ⊂ V, its variance is equal to the varianceσ2

s

of the sequencessi[n], i = 1, . . . , B. The other entries ofv[n]
have the varianceσ2

v = τ2/6 which follows from a uniform
distribution overV. The diagonal structure ofRv allows for a
successive computation of the indicesbi, i = 1, . . . , B, since
the optimization of thei-th summand of the unconditioned
MSE E[‖d[n] − d̂[n]‖2

2] with respect tobi only depends on
thei-th diagonal elementλi,i of the diagonal matrixΛ.

The so-calledbest-laststrategy of successively optimiz-
ing the precoding order relies on the observation that the per-
formance of the data stream precoded last is crucial for a good
overall performance of the precoder. This observation is sup-
ported by the argument that the interference caused by the
data stream precoded last can only be suppressed linearly by
the feedforward filterP , whereas the parts of the interference
caused by the other data streams are combatted non-linearly
by the modulo feedback loop. Therefore, the index of the
data stream precoded last is chosen first and the index of the
data stream performing best with linear precoding is taken.
The procedure is similar for the other indices; based on the
already found indices of the data streams precoded later, the
index is chosen leading to the best performance under the as-
sumption that the interference to the data streams precoded
later is subtracted non-linearly:

Obest-last: bi = argmin
b∈{1,...,B}\{bi+1,...,bB}

λb,b i = B, . . . , 1.

(16)
The costλb,b is proportional to the MSE of theb-th data
stream, since we have for the MSE matrix corresponding to
the unconditioned MSEE[‖d[n]− d̂[n]‖2

2] [see (14)]:

E
[
(d[n]− d̂[n])(d[n]− d̂[n])H

]
= ΛRv

andRv is diagonal [see (15)]. For the efficient implementa-
tion of the best-last order optimzation with the symmetrically
permuted Cholesky factorization, see [8].

5. SYMBOL-WISE PRECODING ORDER
OPTIMIZATION

So far we have searched for a precoding order that performs
well on average for a block of many data symbols. In Fig. 4,
we demonstrate how much performance can be gained by
using a different precoding order for every single data sym-
bol. We numerically simulated the transmission of blocks of
NB = 100 data symbols over10000 different channel real-
izations, where the channel coefficients were i. i. d. according
to the normal distribution. We used a 16QAM symbol alpha-
bet and assumed perfect channel knowledge at the precoder.
The importance of optimizing the precoding order can be seen
from the fact that THP without any sort of order optimiza-
tion is far inferior to all schemes with order optimization. It
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Fig. 4. Comparison of Different Approaches to Optimizing
the Precoding Order for THP,B = N = 4, 16QAM, Uncor-
related Channels

can also be seen that optimizing the precoding order succes-
sively with the symmetrically permuted Cholesky factoriza-
tion (THP succ. block, [8]) performs nearly exactly as well as
when allB! possible permutations are tried out and the one
that minimizes the unconditioned MSE with the assumptions
on the statistics ofv[n] (cf. Section 4.1) is used (THP exh.
block). If, however, for every symboln = 1, . . . , NB the con-
ditioned MSE is evaluated according to (6) for allB! possible
permutations and the best one is chosen for each symbol sepa-
rately, we observe a considerable performance gain (THP exh.
symb.). We see that a large part of the loss of THP compared
to VP is due to the choice for the precoding orderO and not
due to the successive computation of the perturbation signal
in (12). Clearly, the search over all possibleB! precoding or-
ders is infeasible and we have to find a suboptimal strategy
with less complexity to attain some of the gain possible with
symbol-wise precoding order optimization.

In the following, we describe a fairly straightforward
heuristic approach for determining a suitable suboptimal
symbol-wise precoding order, which, however, turns out to
perform worse than best-last block-wise THP. The idea is to
minimize thei-th summand of the total MSE as in (12), but
over the choice of the entrya of the perturbation vectorand
over the choice of the index of the data stream to be precoded
b ∈ {1, . . . , B} \ {b1, . . . , bi−1}, for i = 1, . . . , B. Note,
however, that the successive order computation presented in
the previous section follows the principle of minimizing the
MSE beginning with the indexbB and proceeding backwards.
Clearly, our procedure requires us to start withb1 and to pro-
ceed forwards, as the perturbation vector by definition is de-
termined beginning with indexb1. We therefore employ the
worst-firststrategy, which has been shown to perform nearly



as well as the best-last method of (16) for block-wise order
optimization (see [8]). When using the worst-first strategy,
we choose the indexbi that maximizesthe respective sum-
mand of the MSE, fori = 1, . . . , B, hoping that the good
indices are left over at the end, where the influence on the
performance is the largest.

Our heuristic procedure for symbol-wise order optimiza-
tion works as follows: in thei-th step, we determine the op-
timal perturbationa according to (13) for all remaining pos-
sibilities for the indexbi and choose the index that leads to
thehighestMSE. Note thateT

i F , as well asλi,i, which is re-
quired for computing the MSE-summand, do not depend on
the indicesbi+1, . . . , bB, which are not yet known. This can
be seen by looking at the Cholesky factorization ofΦ, instead
of Φ−1:

ΠΦΠT = L̃Λ̃L̃H,

whereL̃ = L−1 andΛ̃ = Λ−1 [cf. (7)]. The top lefti × i
block ofΠΦΠT only depends onb1, . . . , bi, which is there-
fore also true for the top lefti × i block of L̃ andΛ̃. Since
F = IB − L̃ [see (9)],eT

i F is obviously not influenced by
the choice of the indicesbi+1, . . . , bB. The computation of
the symmetrically permuted Cholesky factorization ofΦ is
thus performed during the successive procedure, with a new
row being added tõL after each step.

As can be seen in Fig. 4, this procedure (THP heur. symb.)
does not perform very well and is even beaten by THP with
a block-wise optimized precoding order. The reason for this
is that the index of the last user is the one that is left over
after the indices of all other users are chosen according to
some criterion. Thus, the most significant contribution to the
performance is not directly optimized taking into account the
data symbol. Clearly, a more sophisticated approach is nec-
essary in which more attention is paid to the last user in the
precoding order.

5.1. Symbol-Wise Ordered Successive Precoding

Recall that the strategies to compute the precoding order per
block are mainly based on the observation that the index of
the data stream precoded last is crucial for the overall per-
formance of the precoder. Similarly, our newsymbol-wise
ordered successive precoding(SOSP) strategy mainly gains
from choosing a good index for the data stream precoded last.
This is accomplished as follows.

The optimal index of the data stream precoded last can be
the index of any data stream, i.e.,bB ∈ {1, . . . , B}. There-
fore, we must test allB values forbB and choose the index
with the best MSE [cost of (6) or (11)]. Since the strategy
of successively choosing the precoding order for each symbol
separately as described above leads to poor results, we rely on
the block-wise best-last strategy to choose the other indices,
i.e., for every value ofbB, the other indicesb1, . . . , bB−1 are
found successively starting withbB−1 following the best-last

1: Φ−1 ← (HHH + ξIB)−1

for k = 1, . . . , B
Λk ← 0B×B,Πk ← IB,A← Φ−1

4: q ← k
5: for i = B, . . . , 2

Π ← IB, whosei-th andq-th rows are exchanged
Πk ←ΠΠk
A←ΠAΠT

Λk(i, i)← A(i, i)
A(1 : i, i)← A(1 : i, i)/Λk(i, i)
A(1 : i− 1, 1 : i− 1)← A(1 : i− 1, 1 : i− 1)
−A(1 : i− 1, i)A(1 : i− 1, i)HΛk(i, i)

12: q ← argminb∈{1,...,i−1}A(b, b)
Λk(1, 1)← A(1, 1)
A(1, 1)← 1
Lk ← lower triangular part ofA

16: T ′ ←HHΦ−1

Table 1. Pseudo Code for Precoding Order and Filter Com-
putation.

rule in (16). Fork ∈ {1, . . . , B},

Ok : bB = k and (17)

bi = argmin
b∈{1,...,B}\{bi+1,...,bB}

λb,b i = B − 1, . . . , 1.

The computation of above precoding ordersOk, k =
1, . . . , B, is independent of the data signals[n]. Therefore,
theB precoding orders and the respective Cholesky factor-
izations (7) only have to be computed once per data block.
The pseudo code is given in Table 1.

The core (lines 5–12) of the algorithm is the standard loop
for the computation of a symmetrically permuted Cholesky
factorization (see [15]), where the elements of the diagonal
matrix Λk are successively minimized [8]. Since we need
the factorizations (7) corresponding to the precoding orders
Ok, k = 1, . . . , B, the index of the last data stream is set tok
in line 4. The filterT ′ computed in line 16 follows from (5),
when dropping the normalization withg.

For every of the precoding ordersOk, k = 1, . . . , B, we
find the Cholesky factorsLk andΛk with Table 1. When pre-
coding the data signals[n], we can compute the perturbation
signala[n] according to (12) for everyk = 1, . . . , B:

ak,bi [n] = argmin
a∈M

ξλi,i

∣∣∣`Tk,i(Πks[n] + a′k[n])
∣∣∣2

= argmin
a∈M

∣∣∣`Tk,is(i)
k [n] + a)

∣∣∣2 (18)

= −Q
M

(
`Tk,is

(i)
k [n]
)
.

Here,s(i)
k [n] =Πks[n] + [ak,b1 , . . . , ak,bi−1 , 0, . . . , 0]T and

`Tk,i is the i-th row of Lk. Sincevk[n] = LkΠk(s[n] +



1: for n = 1, . . . , NB

2: ε←∞
for k = 1, . . . , B
sk ←Πks[n], vk ← sk
for i = 2, . . . , B

6: α← Lk(i, :)sk
7: ak,i ← −τ

⌊
Re(α)
τ + 1

2

⌋
− j τ
⌊

Im(α)
τ + 1

2

⌋
8: sk(i)← sk(i) + ak,i
9: vk(i)← α+ ak,i
10: εk ← ξvH

k Λkvk
if εk < ε

12: ε← εk, kSOSP← k
13: y′[n]← T ′ΠkSOSPskSOSP

14: g ←
√∑NB

n=1 ‖y′[n]‖2
2/Etx

for n = 1, . . . , NB

y[n]← y′[n]/g

Table 2. Symbol-Wise Precoding Order Optimization with
SOSP

ak[n]), we obtain for thei-th element ofvk[n]:

vk,i[n] = `Tk,is
(i)
k [n] + ak,bi [n]

= M
(
`Tk,is

(i)
k [n]
)
.

(19)

Remember thatM(x) = x − Q
M

(x). Hence, thei-th entry
ak,bi [n] of the permuted perturbation signalΠkak[n] is found
as a by-product when computing thei-th entryvk,i[n] of the
signalvk[n].

The SOSP strategy chooses the precoding orderOkSOSP

leading to the minimum MSE [cf. (11)]:

kSOSP= argmin
k∈{1,...,B}

ξvH
k [n]Λkvk[n]. (20)

The pseudo code for precoding a block ofNB symbols is
given in Table 2. For every of theNB symbols, we test the
B different precoding orders. If a better MSE is found (the
MSE is initialized with infinity in line 2), the index is up-
dated in line 12. As obtained in (18), thei-th entry of the
permuted perturbation signal is found in line 7 by quantizing
`Tk,is

(i)
k [n]. With line 8, we gets(i+1)

k [n] from s(i)
k [n] and the

modulo operation of (19) is computed in line 9. Finally, the
normalizationg of the transmit signal to fulfill the transmit
power constraint is found via (5) in line 14.

6. PERFORMANCE COMPARISON

6.1. Complexity of the Precoding Schemes

For the complexity analysis of the discussed precoding
schemes, we count each complex addition, complex multipli-
cation, and division as onefloating point operation(FLOP).

operation complexity order
GramHHH NB2

Cholesky factorization ofΦ orΦ−1 1
3B

3

inversion ofΦ B3

multiplicationHHΠTL NB2

inversion & multiplicationHHL′,−1 NB2

multiplicationPv[n] 2NB
multiplicationLΠs[n] B2

Table 3. Order of Complexity of Basic Operations

filter computationprecoding operation
linear precoding10

3 B
3 2B2

best-last THP 10
3 B

3 3B2

SOSP 1
3B

4 + 9
2B

3 B3 + 7B2

VP 8
3B

3 non-polynomial

Table 4. Order of Complexity of Discussed Precoding Ap-
proaches

Table 3 shows the complexity orders of the FLOP counts for
the basic operations of the precoding schemes.

Analyzing the precoding schemes using the complexity
orders from Table 3 under the assumption ofN = B for better
comparability yields the complexity orders given in Table 4.
Note that for VP, we exploit the decomposition depicted in
Fig. 2, which saves us from having to explicitly computeTVP

and thus makes the filter computation more efficient than for
the linear precoder. Also note that with best-last THP, it is not
necessary to compute the filterFbest-last, since (12) delivers
v[n] as a by-product.

The order of complexity expressions in Table 4 show that
the proposed SOSP has a quartic complexity order for the
filter computation (all other schemes have cubic complex-
ity) and a cubic complexity order for the precoding operation
which is one order of magnitude larger than for linear pre-
coding and the two other THP schemes. However, SOSP has
polynomial complexity contrary to VP. Therefore, it is still a
good alternative to VP in terms of complexity.

6.2. Lattice Reduction

Similar to standard THP, the proposed SOSP strategy can be
further enhanced by inserting alattice basis reductionstep
[16, 17]. Recall that the optimum perturbation vector is the
solution to a closest point search (6) in a lattice with the gen-
erator matrixτU−1. If the generator matrix is multiplied
from the right with a unimodular matrixM , i.e., a matrix
that fulfills |det(M)| = 1, the result is a generator matrix,
or basis, of the same lattice [11, 5]. For the complete lattice
search of VP, the choice of the lattice basis makes no differ-
ence. The suboptimal successive rule (12), on the other hand,
yields different results for different generator matrices of the
same lattice. In particular, if the lattice basis is orthogonal,



the successive rule leads to the optimal perturbation vector. It
is therefore desirable for successive precoding to find a uni-
modular matrixM that leads to an equivalent generator ma-
trix with ‘close to orthogonal’ columns. TheLenstra-Lenstra-
Lovász(LLL) algorithm [18] finds such a ‘reduced’ basis in
fourth-order polynomial time [5], and it has been shown that
successive precoding with an LLL-reduced basis achieves full
diversity order, in contrast to THP [19]. The application of the
lattice reduction algorithm adds anO(B4) complexity term to
the filter computation cost in Table 4. For the implementation
of lattice reduction aided precoding, see [16, 17].

6.3. Simulation Results

For the numerical simulation results of Figs. 5 and 6, we used
the real valued representation of THP (cf. [16]), in order to en-
sure a fair comparison with the lattice reduction aided meth-
ods, which require a real valued representation. (Note that the
performance of THP in Fig. 5 is therefore superior to that in
Fig. 4, albeit at a slightly higher complexity.) Otherwise, the
simulation parameters are the same as in Section 5.

We compare THP with block-wise precoding order com-
putation using the symmetrically permuted Cholesky factor-
ization (THP) and THP with symbol-wise precoding order
optimization following the proposed SOSP strategy. Further-
more, we simulated both methods using a reduced lattice ba-
sis found with the LLL-Algorithm (LR-THP, LR-SOSP). In
Fig. 5, withB = N = 4 users and transmit antennas, our new
strategy combined with lattice reduction is very close to the
optimum (VP). It is also apparent that the application of the
lattice reduction algorithm yields a considerable gain, as the
slope of the graphs for successive precoding without lattice
reduction decreases visibly due to the lower diversity order.
Nonetheless, the advantage of the proposed SOSP method is
clearly visible.

For B = N = 10 (Fig. 6), the gain through symbol-
wise order optimization is much larger. Our method comes
quite close to the optimum performance and clearly outper-
forms THP with block-wise order optimization, regardless of
whether lattice reduction is applied. As the lower diversity
order of successive precoding without lattice reduction is not
visible in the depicted SNR region, the gain through lattice
reduction is not very large.

7. CONCLUSION

After discussing the MSE-optimal precoder for decentralized
receivers equipped with a modulo operator, we showed how
by employing a simple heuristic we arrive at the well known
successive precoder. The structure of the successive precoder,
or THP, allows us to freely choose a precoding order, in order
to further minimize the MSE. While in all previous work on
THP the precoding order is kept constant for the whole block
of data symbols, we showed that making use of the knowl-
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Fig. 5. Performance of Proposed Scheme,B = N = 4,
16QAM, Uncorrelated Channels

edge of the data symbols at the precoder in order to choose
a different order at each time instance can significantly im-
prove the performance of THP. Furthermore, we proposed a
technique for finding a good precoding order for a given vec-
tor of data symbols. Our SOSP strategy is based on trying out
B different orders, each with a different user to be precoded
last, and comparing the resulting MSEs. The complexity of
this scheme is one order higher than that of conventional THP,
but still polynomial. The performance, on the other hand, is
very near to that of the optimal precoder that has exponential
complexity. Our strategy can furthermore be combined with
well known lattice reduction techniques, in order to further
improve performance in some scenarios.
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