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ABSTRACT signal of THP is inferior to that found by VP because of the

successive nature of THP. However, THP has a substantially

We propose a new approach to compu_ting the perturl:_;atiollawer complexity per symbol than VP, as the application of
signal for the vector broadcast channel with modulo receiversy . THp filters has a complexity quadratic (polynomial) in
Slncel thg optln}um/ector precodmg(VP) h3§ prof|1|b|t||:/e the number of receivers. In [8], an algorithm for the compu-
comp e?uty, We TOCUS on successive precoding, aiso KNOWilin, of the THP filters was presented which has the same
asTomlinson Harashima precodlr@HP)_. The perfor_ma_nce order of complexity as that of linear precoding.

of THP _str_ongly depends on the precoding order which is usu- Our approach to THP is different. We do not compute the
ally optimized for a block of symbols. We show that a large ecoding order once per block of symbols. Instead, we pro-

Ear;cho fthf pe;fﬁ]rma%ciloiséo: TtHbP (;Empared o i\\fP IS Cr:usfpose to compute the precoding order for every data symbol
y the precoding order a O by the successive compu eparately, since the transmitter knows the data signal. Moti-
tion of the perturbation signal. Based on the observation th

especially the index of the data stream precoded last affec ated by the result that especially the index of the data stream

Stecoded last has a strong influence on the performance of
the performance of THP, we develop a new variant of TH .
: X o _ THP (e.g. he foll
with a complexity polynomial in the number of receivers that (e.g., [8]), we propose the following procedure per data

computes the precoding order per svmbol and leads to resul ector. For all possible values of the index of the data stream
P P 9 per sy iﬁwich is precoded last, we compute the MSEs of THP for the

very close to those of VP which has a complexity exponentia iven data vector. Then, the transmit signal for that particular

in the number of receivers. data vector is computed based on the precoding order leading
to the minimum MSE.
1. INTRODUCTION After introducing the system model in Section 2, we re-
view VP and standard THP based on timénimum mean
When the decentralized receivers in the vector broadcast setaguare error(MMSE) criterion in Sections 3 and 4, respec-
are equipped with modulo operators, the transmitter has th@vely. The proposed THP with a precoding order optimized
freedom to add a perturbation signal to the data signal priossymbol-wise is presented in Section 5 and the complexity
to the linear transformation which gives the transmit signalof the investigated precoding schemes is discussed in Sec-
These degrees of freedom due to the modulo operators are dpn 6.1. The simulation results in Section 6 show that the
timally utilized by VP [1, 2] which finds the perturbation sig- performance of our symbol-wise optimized THP is close to
nal by a complete closest point searchin a lattice. The compthat of VP.
tation of the linear transformation necessary for VP only has Notation: Vectors and matrices are denoted by lower
to be performed once per block of symbols and has the sansase bold and capital bold letters, respectively. Weli[sé
complexity as that for linear precoding (e.g., [3, 4]). SinceRe(e), Im(e), tr(e), (o)™, (o), and| o ||, for expectation,
the closest point search in a lattice has a complexity exponerneal part of the argument, imaginary part, trace of a matrix,
tial in the dimensionality of the lattice (e.g., [5]), VP has atransposition, conjugate transposition, and Euclidian norm,
per-symbol complexity that is exponential in the number ofrespectively. The floor operator, which gives the largest inte-
receivers and is thus prohibitive. ger smaller than or equal to the argument, is denotepsly
In the case of THP, the elements of the perturbation signall random sequences are assumed to be zero-mean and sta-
are computed successively by means of a feedback loop witionary. The covariance matrix of the vector random process
amodulo operator [6, 7, 8, 9, 10]. Due to the successive come[n] is denoted byR,, = E[z[n]z![n]], whereas the vari-
putation, THP strongly depends on the precoding order (e.gance of the scalar random process] is 05 = E[ly[n]|?].
[7, 8, 9]) which is computed once per block of symbols based’he N x N identity matrix isI, its i-th column ise;. We
on an assumption on the statistics of the output signal of thase0Oy 3, and0y for the N x M zero matrix and theV-
transmitter's modulo operator (e.g., [10]). The perturbatiordimensional zero vector, respectively.
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S[n, 3. VECTOR PRECODING
M(e)

The VP filters and the VP perturbation signal result from fol-

_ . . lowing MMSE optimization
Fig. 1. System Model with Modulo Receivers.

{TVPa gvp, aVP[n]} = argmin E(Ta g, a’[n])
{T.g,aln]}

Ng 3)
2. SYSTEM MODEL st: > E[lylnll3] sn]] = Ex

n=1

A perturbation signak[n] € M? is added to the data sig- with the MSE which is conditioned on the known data signal

nal s[n] = [si[n],...,s[n]]T, wheresy[n] € A is the Ne
data stream for receivér The sumd|n] is linearly trans- e(T, g,aln]) = Z E “\d[n] —d[n]||2 | S[n]} @
formed byT € CV*® to get the transmit signaj[n] € CV =

(see Fig. 1). The modulation alphabet Asand the lat-

tice [11] corresponding to the receivers’ modulo operatord he filters can be readily obtained with the method of La-
Mod(z) = = — 7|Re(z)/7 + 1/2| — jr|Im(z)/7 + 1/2] grangian multipliers and can be expressed as (see [2])

is denoted byM = 7Z + j7Z. The fundamental Voronoi 1

region of M is V, i.e., Mod(e) € V. To avoid ambigu- Tvp = EHHSP_I and

ities, we require that the modulo constanis sufficiently (5)
large to ensure thah C V (e.g., [12]). For notational Zfﬁld\I}P[n]HHH@*dep[n]

brevity, the modulo operators of all receivers are comprised gvp = \/ Fi

in M(e) € VE which is defined element-wise, i.&}(z) =
[Mod(z1),...,Mod(zg)]", wherez,, is thek-th element of with® = HH"+¢Ip and¢ = tr(R,,)/Ex. By substituting
the vectorr € CB. above filter solutions into the costT’, ¢, a[n]) of (3), we find

. he rule for th m ion of th rturbation signal
The transmit signaly[n] propagates over the channelt e rule for the computation of the perturbation signa

HBXN of which theb-th row is the vector channel fromthe (] = argmin &(s[n] + a[n))" & (s[n] + a[n]). (6)
N channel inputs to receivér and is perturbed by the addi- a[n]eMB

tive B-dimensional noise signaj[n] = [n1[n],...,ns[n]]", . o .
wheren;[n] € C denotes the noise of receivier The result-  With the Cholesky factorizatio# = UU™, we can see that
ing received signals are weighted with the scajae R, (6)is a closest point search in a Iattlcg, i.e., we try to fmd the
common to all receivers, to obtain the modulo inputs (se&00rdinates (element 8fl”) for the point of the lattice with
Fig. 1) which are collected id[n] = [di[n],...,dx[n]]" € the generator matrixU " lying closest to-U ~'s[n]. This
problem can be efficiently solved with the Schnorr-Euchner
algorithm [13]. However, the problem (6) is NP-hard (e.g.,
[5]) and is therefore impractical.

CP with dy[n] for receiverk. The modulo operators’ outputs
3[n] € V& are mapped to the modulation alphakeby the

quantizerQ(e).
The data signa$[n] is the desired signal fai[n]. Since a 4. TOMLINSON HARASHIMA PRECODING
shift of the input of the modulo operatdf(e) by any element '

of M does not change the outpijt], the transmitter has the The cholesky factorization with symmetric permutation
freedom to use

et =LYAL (7)
dln] = s[n] + a[n] (1) wheredisa diagonal matrix and. is unit lower triangular,
enables the factorization of the precoding filleas
with a[n] € M as the desired signal for the modulo inputs T=Plg—-F)'I1 (8)
with
9
F=Iz-L" @)

Note that we assume that the chanFeis known to the trans- _ _ 5 _
mitter and constant over a block dfs symbols. Thus, our The permutation matridI = Y., e;e; fulfills IT-! =
formulation is based on time averages oMgrsymbols. " andb; € {1,..., B} is thei-th element of theB-tuple



Fig. 2. Decomposition of Precoding Filter.
Fig. 3. Transmitter of Tomlinson Harashima Precoding.

O = (b1,...,bp) which we call precoding order. The de-

composition in (8) leads to the structure of the transmitter irjere, the quantizer to the closest lattice poirttbis denoted
Fig. 2, since the feedback structure whhis an implementa- Qu(®) which can be expressed by means of the modulo
tion of (I — F)~". The symmetrically permuted Cholesky operatorMod(s) asQy,(x) = « — Mod(z) for anyz € C.
factorization (7) can also be used to rewrite (6): Hence, the permuted perturbation signal reads as

2
ayp[n] = argmin & HAl/QLH(s[n] + a[n])H .

a[n]eMB 2 Iagycdn] =M (ITs[n] + Fv[n]) — IIs[n] — Fo[n].

We see thaL IT(s[n] + a[n]) is a by-product of above lattice With this result, we get for the output of the feedback loop
search. Therefore, we only need to compute the filtgs

and notTi,p for VP! since for the input signal[n] of R/p we v[n] = IIs[n] + IIa[n] + Fov[n]
have (see Fig. 2) =M (ITs[n] + Fv[n]).
_ _ -1l _
vlp] = (I = F)" 1 (s[n] + aln]) = LI (s[n] + a[n(]l)b) We see that the addition of the successively computed pertur-
. . : ation signal can be replaced by a modulo operator inside the
;2“8’ the rule for the perturbation signal (6) can be rewrltteﬁjeedback loop as depicted in Fig. 3 which is the model for the

) 12 2 transmitter of THP used in [8, 10]. As the expressions for the
avp[n] = argmﬁ/lﬂg 3 HA v[n] H2 : A1) fitters in (9) are the same as those found for THP based on the
alnle MMSE criterion in [8], we can conclude that the only differ-
Note thatk[||d[n] — d[n]|3 | s[n]] = £v"[n]Aw[n], since the  ence of VP and THP is the computation of the perturbation
cost of (6) is equal to the conditioned MSE of theh data  vector. VP performs the complete lattice closest point search
symbol. (6) to find the perturbation vector, whereas THP employs the

To avoid the high computational complexity of the lat- heuristic of a successive computation [see (12)].
tice search (6), we can exploit the lower triangular struc-

ture of L and use the heuristic of computing the elements4 1 Block-Wise P ding Order C tati
of a[n] successively, i.e.ap,[n] is computed for given ock-Yvise Frecoding LDrder L.omputation

ap, [}, ..., ap, _, [n] minimizing thei-th summand instead of The choice of the permutation matrBf which depends on
the whole sum of the Euclidian norm: the precoding orde® strongly affects the MSE achieved
. 2 by the successive computation (12) compared to (6). The
_ T A1/2 / Yy p p
asucch 1] arfeﬁmg e; ACL(Is[n] +a'ln]) - (12) straightforward approach to find the optimum precoding order
_ , T for THP is to try out allB! possible orders for every data vec-
with a’[n] = lasuccy, [, - .. asuecy ., [n]: @, %, .. X]7 4o o1 But since the resulting computational complexity is

Note that the entries<’ are arbitrary due to the structure of , o, higher than for VP, another heuristic is usually employed

L. Let);; denote the-th diagonal element al. Then, we ¢, THp First, the precoding order is computed based on
have that an average argument, i.e., the unconditioned transmit power
TAV2L — /N L = /o (ef +eL—ef)  Ellyln]|3] and the unconditioned MSE|d[n] — d[n] 3] are
el et (s — LY respectively used instead of the conditioned transmit power
= Ve + VA (Io = L)L Bl y[n)|3 | s[n)) and MSEE(|d{n] — d[n]|3 | s[n}:
Therefore, above rule (12) for the successive computation of ) .
the perturbation signat[n] can be rewritten as [see also (9) E [|ly[n][3] = tr (PR, P") and (14)
and (10) 2 B [ldln] - dinlli3] = ¢E [ A" 20n)3] = ¢tr (AR,),
Asucch; = argminé; ; |sb% [n] +a+ e?F’u[n”

aeM where we used the result in (11) to obtain the expression for
= — Qu (sv,[n] + e Foln]) . (13)  the unconditioned MSE. Second, the approximate statistical
properties of the signab[n] are exploited (see [14, Theo-

1To save the complexity of computing the inversedafwe have to use rem 3 1])
the Cholesky factorizatiod = L’ A’ L'-H for VP. ConsequentlyL, A, and S
IT must be replaced witl.’>»—*, A~1, andI g, respectively. R, = diag(o?,02,...,0%), (15)

s v b v



i.e., the outpuw|[n| of the modulo operator has uncorrelated

entries. Since the first symbol is not affected by the modulc - R

operator due té\ C V, its variance is equal to the variancg 16t
ofthe sequencesn],i = 1, ..., B. The other entries af[n]
have the variance? = 72 /6 which follows from a uniform
distribution ovetV. The diagonal structure d?,, allows for a
successive computation of the indidgsi = 1, ..., B, since
the optimization of the-th summand of the unconditioned
MSE E[||d[n] — d[n]||2] with respect toh; only depends on
thei-th diagonal elemeny; ; of the diagonal matrixA. .
The so-calledbest-laststrategy of successively optimiz- L —&— THP exh. blockl: - = .
ing the precoding order relies on the observation that the per 10" | ——— THP succ. block.. .. .

formance of the data stream precoded last is crucial for a goo ——v—— THP heur. symb. ARG
—6— THP no ordering.- .. ... .. \.\/ . - 3t

uncoded BER

—— THP exh. symb. :

overall performance of the precoder. This observation is sup 5 . : :
ported by the argument that the interference caused by th 10_5 0 5 10 15 20 25
data stream precoded last can only be suppressed linearly | Es/N in dB

the feedforward filte®?, whereas the parts of the interference

caused by the other data streams are combatted non-linea[%_ 4. Comparison of Different Approaches to Optimizing
by the modulo feedback loop. Therefore, the index of thgne Precoding Order for THBG = N = 4, 16QAM, Uncor-
data stream precoded last is chosen first and the index of thg|ated Channels

data stream performing best with linear precoding is taken.
The procedure is similar for the other indices; based on the

already found indices of the data streams precoded later, @y also be seen that optimizing the precoding order succes-
index is chosen Iea@dmg to the best performance under the a§ively with the symmetrically permuted Cholesky factoriza-
sumption that the interference to the data streams precodgg, (THP succ. block, [8]) performs nearly exactly as well as

later is subtracted non-linearly: when all B! possible permutations are tried out and the one
o b - aremin \ i—B 1 that minimizes the unconditioned MSE with the assumptions
pestlast: — %i = s bb BT P on the statistics ob[n] (cf. Section 4.1) is used (THP exh.
be{l,....B\{bit1,....bB}

(16)  block). If, however, for every symbal = 1, ..., Ng the con-
The cost),;, is proportional to the MSE of thé-th data ditioned MSE is evaluated accqrding to (6) for Bll possible
stream, since we have for the MSE matrix corresponding t@ermutations and the best one is chosen for each symbol sepa-

the unconditioned MSE|||d[n] — d[n]|2] [see (14)]: rately, we observe a considerable performance gain (THP exh.
symb.). We see that a large part of the loss of THP compared
E [(d[n] —d[n])(d[n] — ci[n])H} = AR, to VP is due to the choice for the precoding ordeand not

due to the successive computation of the perturbation signal
andR, is diagonal [see (15)]. For the efficient implementa-in (12). Clearly, the search over all possiliéprecoding or-
tion of the best-last order optimzation with the symmetricallyders is infeasible and we have to find a suboptimal strategy

permuted Cholesky factorization, see [8]. with less complexity to attain some of the gain possible with
symbol-wise precoding order optimization.
5. SYMBOL-WISE PRECODING ORDER In the following, we describe a fairly straightforward
OPTIMIZATION heuristic approach for determining a suitable suboptimal

symbol-wise precoding order, which, however, turns out to
So far we have searched for a precoding order that perforngerform worse than best-last block-wise THP. The idea is to
well on average for a block of many data symbols. In Fig. 4minimize thei-th summand of the total MSE as in (12), but
we demonstrate how much performance can be gained lywver the choice of the entry of the perturbation vectand
using a different precoding order for every single data symever the choice of the index of the data stream to be precoded
bol. We numerically simulated the transmission of blocks ofv € {1,...,B} \ {b1,...,b;—1}, fori = 1,..., B. Note,
Ng = 100 data symbols over0000 different channel real- however, that the successive order computation presented in
izations, where the channel coefficients were i.i. d. accordinthe previous section follows the principle of minimizing the
to the normal distribution. We used a 16QAM symbol alpha-MSE beginning with the indez and proceeding backwards.
bet and assumed perfect channel knowledge at the precod€iearly, our procedure requires us to start wittand to pro-
The importance of optimizing the precoding order can be seeceed forwards, as the perturbation vector by definition is de-
from the fact that THP without any sort of order optimiza-termined beginning with indek;. We therefore employ the
tion is far inferior to all schemes with order optimization. It worst-firststrategy, which has been shown to perform nearly



as well as the best-last method of (16) for block-wise ordefl: @' — (HH" + {Ip)~!
optimization (see [8]). When using the worst-first strategy, fork=1,...,B
we choose the indek; that maximizeshe respective sum- Ay —Opyp, I, —1p, A — P!
mand of the MSE, foti = 1,..., B, hoping that the good |4: ¢« k
indices are left over at the end, where the influence on the: fori=1B,...,2
performance is the largest. IT — I, whosei-th andg-th rows are exchanged
Our heuristic procedure for symbol-wise order optimiza 11y, — 1111},
tion works as follows: in the-th step, we determine the op- A—IAIT"
timal perturbatioru according to (13) for all remaining pos- Ay(i,i) — A(i, 1)
sibilities for the indexb; and choose the index that leads to AL i, 1) — AL 24,1) [ Ag(i, 4)
thehighestMSE. Note thae] F', as well as\; ;, which is re- Al:i-1,1:0i-1) < A(l:i—1,1:0-1)
quired for computing the MSE-summand, do not depend oh —A(1 i = 1,9 A0 0 — 1,9 Ag(i,9)
the indicesh;, 1, . .., b, which are not yet known. This can |12: q < argminge gy qy A(b, D)
be seen by looking at the Cholesky factorizatiodoinstead Ap(1,1) — A(1,1)
of o~ 1: A(1,1) « 1
OeII" = LALH L, — lower triangular part ofA
’ 16: T' «— HUp!

whereL = L' andA = A~! [cf. (7)]. The top lefti x i . _
block of ITSIT™ only depends ofy, . . ., b;, which is there- Table 1. Pseudo Code for Precoding Order and Filter Com-
fore also true for the top left x i block of L and A. Since putation.

F =15 — L [see (9)],e] F is obviously not influenced by

the choice of the indices; 11, ...,bp. The computation of .
the symmetrically permuted Cholesky factorization@®fis rulein (16). Fork € {1,...., B},
thus performed during the successive procedure, with a ne% by =k and (17)

row being added td. after each step.

As can be seenin Fig. 4, this procedure (THP heur. symb.)
does not perform very well and is even beaten by THP with
a block-wise optimized precoding order. The reason for thiThe computation of above precoding ordety,k =
is that the index of the last user is the one that is left oven, ... B, is independent of the data signgh]. Therefore,
after the indices of all other users are chosen according tthe B precoding orders and the respective Cholesky factor-
some criterion. Thus, the most significant contribution to thézations (7) only have to be computed once per data block.
performance is not directly optimized taking into account therhe pseudo code is given in Table 1.
data symbol. Clearly, a more sophisticated approach is nec- The core (lines 5-12) of the algorithm is the standard loop
essary in which more attention is paid to the last user in theor the computation of a symmetrically permuted Cholesky
precoding order. factorization (see [15]), where the elements of the diagonal
matrix A, are successively minimized [8]. Since we need
the factorizations (7) corresponding to the precoding orders
O,k =1,..., B, the index of the last data stream is sekto

Recall that the strategies to compute the precoding order pét line 4. The filterT” computed in line 16 follows from (5),
block are mainly based on the observation that the index ohen dropping the normalization with

the data stream precoded last is crucial for the overall per- For every of the precoding orde¢¥;, k = 1,..., B, we
formance of the precoder. Similarly, our neymbol-wise find the Cholesky factors, andA; with Table 1. When pre-
ordered successive precodif§OSP) strategy mainly gains coding the data signaln], we can compute the perturbation

b, = argmin My t=DB-1,...,1
be{l,...,B\{bit+1,...bB}

5.1. Symbol-Wise Ordered Successive Precoding

from choosing a good index for the data stream precoded lastignala[n] according to (12) forevery = 1, ..., B:
This is accomplished as follows. )
The optimal index of the data stream precoded lastcanbe  qy,;, [n] = argmin €N, ; ek ,(ITgs[n] + aj, [n])‘
the index of any data stream, i.éz € {1,..., B}. There- a€M
fo_re, we must test alB values forbp and ch_oose the index — argmin ‘f;fisz(f) [n] + a)r (18)
with the best MSE [cost of (6) or (11)]. Since the strategy a€M ’

of successively choosing the precoding order for each symbol
separately as described above leads to poor results, we rely on
the block-wise best-last strategy to choose the other indices,
i.e., for every value ob, the other indices,,...,bp_, are  Here s\ [n] = Mysn] + [arp,s - - arp 1,0,...,0]" and
found successively starting with;_; following the best-last KTJ- is thei-th row of Ly. Sincewg[n] = LpII;(s[n] +

=—Qum (fk Lskl [n ]) :



1. forn=1,...,Ng operation complexity ordef
2: € 00 GramHH"Y NB?
fork=1,...,B Cholesky factorization o or&~* |1 B>
8 « IIys[n), vy — si inversion of® B3
fori=2,...,B multiplication HEITTL NB?
6: a « L (i,:)sy, inversion & multiplicationH™ L~ | N B2
7: i — —T {Re_(a) 1 lJ —jr {ImT(OA) I %J multiplication Pv|[n] 2];73
multiplication LIT B
8: su(i) — (i) + ars ultiplicatio s[n]
9 (1) G T ki Table 3. Order of Complexity of Basic Operations
10: Ek — §’Uk Akvk
if e, <e filter computatioprecoding operation
12: €« r, ksosp— k linear precoding® B3 2B2
13: y'[n] = T MigospSksose best-last THP 1%33 3B2
14: g /SNy nl]13/ B SOSP §B4 +9B% | B4 TR
forn=1,..., Nz VP £B? non-polynomial
yln] < y'[n]/g

Table 4. Order of Complexity of Discussed Precoding Ap-
Table 2. Symbol-Wise Precoding Order Optimization with proaches
SOSP

Table 3 shows the complexity orders of the FLOP counts for
the basic operations of the precoding schemes.

Analyzing the precoding schemes using the complexity
orders from Table 3 under the assumptiodof= B for better
comparability yields the complexity orders given in Table 4.
Note that for VP, we exploit the decomposition depicted in
Fig. 2, which saves us from having to explicitly compfiig
and thus makes the filter computation more efficient than for
the linear precoder. Also note that with best-last THP, it is not
necessary to compute the filtétestiast Since (12) delivers
v[n] as a by-product.

The order of complexity expressions in Table 4 show that
the proposed SOSP has a quartic complexity order for the

. H filter computation (all other schemes have cubic complex-

Fsosp= kg?%?lg} ¢vy; [n] Avg[n]. (20) ity) and a cubic complexity order for the precoding operation

7 which is one order of magnitude larger than for linear pre-
The pseudo code for precoding a block 8 symbols is coding and the two other THP schemes. However, SOSP has
given in Table 2. For every of th&g symbols, we test the polynomial complexity contrary to VP. Therefore, it is still a
B different precoding orders. If a better MSE is found (thegood alternative to VP in terms of complexity.
MSE is initialized with infinity in line 2), the index is up-
dated in line 12. As ob_taine(_j in (18),_ th‘_eth entry of th_e_ 6.2. Lattice Reduction
permuted perturbation signal is found in line 7 by quantizing
gk Lsk [ ]. With line 8, we getg(i+1 [n] from 3(1 [n] and the ~ Similar to standard THP, the proposed SOSP strategy can be
modulo operation of (19) is computed in ||ne 9. Finally, thefurther enhanced by insertinglattice basis reductiorstep
normalizationg of the transmit signal to fulfill the transmit [16, 17]. Recall that the optimum perturbation vector is the
power constraint is found via (5) in line 14. solution to a closest point search (6) in a lattice with the gen-
erator matrixTU ~!. If the generator matrix is multiplied
from the right with a unimodular matrid1, i.e., a matrix
that fulfills |det(M)| = 1, the result is a generator matrix,
or basis of the same lattice [11, 5]. For the complete lattice
search of VP, the choice of the lattice basis makes no differ-
For the complexity analysis of the discussed precodingnce. The suboptimal successive rule (12), on the other hand,
schemes, we count each complex addition, complex multipliyields different results for different generator matrices of the
cation, and division as orftoating point operatioFLOP).  same lattice. In particular, if the lattice basis is orthogonal,

ai[n]), we obtain for the-th element ofvy [n]:

5] + ap, [n)

M (€0 n))

Remember thabl(z) = z — Qy(x). Hence, the-th entry
a.»; [n] of the permuted perturbation signfl, a [»] is found
as a by-product when computing tih entryvy, ;[n] of the
signalvy[n].

The SOSP strategy chooses the precoding ofdigr,.
leading to the minimum MSE [cf. (11)]:

Vk,i[n] =
(19)

6. PERFORMANCE COMPARISON

6.1. Complexity of the Precoding Schemes



the successive rule leads to the optimal perturbation vector. |
is therefore desirable for successive precoding to find a uni
modular matrixM that leads to an equivalent generator ma-
trix with ‘close to orthogonal’ columns. THeenstra-Lenstra-
Lovasz(LLL) algorithm [18] finds such a ‘reduced’ basis in
fourth-order polynomial time [5], and it has been shown that 1
successive precoding with an LLL-reduced basis achieves fu @
diversity order, in contrastto THP [19]. The application of the .
lattice reduction algorithm adds &n(B*) complexity termto 3
the filter computation cost in Table 4. For the implementation 5
of lattice reduction aided precoding, see [16, 17].

6.3. Simulation Results

For the numerical simulation results of Figs. 5 and 6, we use
the real valued representation of THP (cf. [16]), in order to en-
sure a fair comparison with the lattice reduction aided meth-
ods, which require a real valued representation. (Note that thelg_

VP
— % — LR-SOSP
104 —e—sosp |

—+— LR-THP ) e
—6— THP

-5 0 5 10 15 20 25
Es/Noin dB
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performance of THP in Fig. 5 is therefore superior to that i”lGQAM, Uncorrelated Channels

Fig. 4, albeit at a slightly higher complexity.) Otherwise, the
simulation parameters are the same as in Section 5.

We compare THP with block-wise precoding order com-edge of the data symbols at the precoder in order to choose
putation using the symmetrically permuted Cholesky factora different order at each time instance can significantly im-
ization (THP) and THP with symbol-wise precoding orderprove the performance of THP. Furthermore, we proposed a
optimization following the proposed SOSP strategy. Furthertechnique for finding a good precoding order for a given vec-
more, we simulated both methods using a reduced lattice b&or of data symbols. Our SOSP strategy is based on trying out
sis found with the LLL-Algorithm (LR-THP, LR-SOSP). In B different orders, each with a different user to be precoded

Fig. 5, withB = N = 4 users and transmit antennas, our newast,

and comparing the resulting MSEs. The complexity of

strategy combined with lattice reduction is very close to thehis scheme is one order higher than that of conventional THP,
optimum (VP). It is also apparent that the application of thebut still polynomial. The performance, on the other hand, is
lattice reduction algorithm yields a considerable gain, as thgery near to that of the optimal precoder that has exponential
slope of the graphs for successive precoding without latticeomplexity. Our strategy can furthermore be combined with
reduction decreases visibly due to the lower diversity ordesvell known lattice reduction techniques, in order to further
Nonetheless, the advantage of the proposed SOSP methodrisprove performance in some scenarios.

clearly visible.

For B = N = 10 (Fig. 6), the gain through symbol-
wise order optimization is much larger. Our method comes
quite close to the optimum performance and clearly outper- )
forms THP with block-wise order optimization, regardless of [
whether lattice reduction is applied. As the lower diversity
order of successive precoding without lattice reduction is not
visible in the depicted SNR region, the gain through lattice
reduction is not very large.

(2]

7. CONCLUSION

After discussing the MSE-optimal precoder for decentralized [3]
receivers equipped with a modulo operator, we showed how
by employing a simple heuristic we arrive at the well known
successive precoder. The structure of the successive precoder,
or THP, allows us to freely choose a precoding order, in order[ ]
to further minimize the MSE. While in all previous work on
THP the precoding order is kept constant for the whole block

of data symbols, we showed that making use of the knowl-
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