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Abstract

We propose in this paper a new adaptive algorithm
which is designed to track systemn represented by a fil-
ter which has a P2 order warkovian time evolurion. Tlhe
Nou Stationary LMS {(NSLMS) algoritlimis able toiden-
tify the unknown order aud paramelers of the markov
model. An analvsis of the perlormances of the adaptive
filler when the input s Lid, shows that the NSLMS
presents better performances than the classical LMS. In
particular, this superiority vcenrs when the system time
evolution 1s so last that the tracking with LMS ts harm-
ful.

1 Introduction

The most widely nsed amonyg the gradienl based adap-
Labiou algorithm is the Least Mean Square (LMS) al-
gorithin.  Basically the LMS algorithm is designed to
estimalte reeursively the value ol a fixed anknown fl-
Ler. However, in a non stallonary coidext this algorithm
Las wteresting tracking performances, This steady state
property has been extensively analyzed in the hiterature
for random walk variations (sec for example [1]).

In lact, the adaptive identification offered by the LMS
is hlind regarding o the wature of the time evolution
model of the real filter.

In order (o guarantee better results than those realized
by the classic LAS, we propose, in Uhis paper a new al-
gorithm that can Wdentify the markovian tine evolution
of the real filter, encounlered I Lraysnnssion systems.
Clontrarily to the Kalinan approach, the proposcd
NSLMS dorsn’t suppose a prior kpowledge of the non
stationarity structure and the unknown statisties of the
uhservation noise and the (ilter noise, 2], In other re-
spects, Whie NSLMS constitutes o new approach diflerent
from thaose refative to the gradient algorithis based on
the idea of a variable convergence factor, [, [40

2 Presentation of the problem

In this paper we are interested in adaptive identification
of markovian time varving filters. The classical formm-
lation ol such fillering problem is depicled in figure (1],
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Figure 11 Adaplive identification of tlime varying filter

The noisy input fontpnt equation of 1he filler is,
wo= I Xy + 1y {1

where, Xp = (rp.2p_0, -, o N4 )T is the known sta-
tionary input veetar and ny s an unknown L1.d. obser-
vation noise. The filker parameter vector 1s assimmed £
arder markoy thne varying,
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Fr = Zﬂs-"'}.—x + €2 (2)

=1

where (;)i=1 p ensure the stability of the filter. and £2;
cabled non stationary noisc, 15 an unknown zero—mean,
idd. process independent of Xpoand np. This gen-
cral model represents different types of non stationar-
ity such as variations of oscillatory nature. In particu-
lar, the non siationarity ol an ionospheric radio mohile
Lransmission chhannel is well represented by second order
markov model, [5].

The ovolution of the parameler vector I of the
adaptive filler is governed by the estimate orror.



= e — H;‘f'.\'k, in order Lo winimize a eriterion, such
as the mean square error 77{¢7 ), for the LMS.

The tracking capacity of the adaptive algorithm
s measured by Lhe  nornmalized  misadjustement,
M= lim{ E[EE.} — P/ Py where By s the power of
- kb —ra

3 Design of the Non Stationary
LMS algorithm

The Nou Stationary (NSLMS) algorithun is designed in
ordor to take in to account the prior knowledge ol the
structure non stationarity model, (2. We keep the
structure ol the classical LMS, described by Hyy =
i 4 per XN and we include the constratnls on the va-
ture of the non stationarity as foliows:

P
Mipr = 3 @ llesri + pXee (3)

=1

where £ 15 an estimation of 77, the exact order of the

markov model, and (a"'),' is an adaptive estimation

:l,.ﬁ

of the unknown paramcters of the markov model.

Tl adaptive estimation of cach parameter i; of the
. . - Lo o oy

model 15 macde in order 1o still minimize £{ep). The

gradient of ¢ is given by,

clay, =N efii;

i L diT,
S e (HELX +Laf ¢

a=n.ik]
(4}

This complexity 1s due 1o recursive nature of the marko-

vian structure (3).

In order to simphfy the algorithim, we use an approxi-

wialion of the true gradient, iy such a way that the Non

Stationary LAMS algorithi s descrilied by,

e = ye - HIX, (5)
dik+ Y=+ ;s.;([.’l-‘f'_?:,\'&_}g}‘_ (65}
}’;
Mipi =3 alk+ 1V aqioi 4 puNpe (7)
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where ()1 0 = 0 s a (small) step size that controls
the adaptive wentilication of «;.

4 Steady state behaviour of the
NSLMS: first order markov

case
We consider hiere a lirst order markoyv non stationanty,
Po=alyp_1 4+

The analysis of the two coupled adapration, {6} (7)), is
complex. First, we analyze Lhe tracking capacity ol the

algorithin in the steady state when Lhe time evolulion
of the adaptive lilter is delined by,

Hegr = oy + pXpey (R)
where [d] < | 1s a fixed estimation of the parameter .
The purpose of this section is 1o establish a comparative
study hetween NSLMS and LMS.
4.1 Residual misadjustement
Let, Vi = Hp — Fp denote the filter deviation vector at
time k. consequently e = ng — l-"','__r Ni. IVs easy to show
thal tlie deviation veclor ¥ obeys to a linear recurrence,
Vigr = {u — pXe AT Ve X ey +{d—a) ke —Qp (9)

Under the independence assumption belween V, and
Npoowe can prove that the normalized misadjustement
15 composed of two parts,

MNSEMS = Ar3 4 agNe (10)
where i = pV o is the normalized step size.
e the first part

"
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M=

v pv(2ad —w)y+ N(L - 1

t-.

s mercasimg as ¢ increases ane s related to the asso-
clate stalionary conlext [6].

The caleulus of this part is elabarated without the in-
dependence assnmption.

s the second part

MNY = (12)

where & = B, Pa/ P, aund

(G —a) + {1~ aa) [@v+ N(1~8")]
(1 — a?)[er+ N1 — ad)]

=

s deereasing as v decreases and s relative Lo the lag
compaonent of the misudjustement.,

The above result is made when the sequence {zp} is
characterized by fxy| = (e, The calonlus of the misad-

Justennent 18 also possible under the assumption of the

gaussian sequence; the resulls are shphtly differsnt.

4.2 Limitations of the LMS

The misadjustement of 1l EMS is given by equalion
(10—12) for @ = 1. IFrom (10 we deduce thal,

- 2ON
AfEMS o ! vt : 26 _ (13)
22— {{ +alavr+ N(1 - a})



The analysis of the above resnlt show the superiority
of the NSLMS over the LBS which present some limi-
tations for certain type of variations. In fact the anal-
yais of the theoretical expression ol the optiinal step

size (foy]. that minimizes _-"UJ;"""”‘, vields Lo the follow-
ing results. They display prominently a new aspect of

tracking whiclr we called harmful rracking [7).

e The normalized misadjustement 3 FH3

15 LHGrens-

= This
N +2
condilion shows that the tracking is harmful for
all values of the power. Py, of the non stalicuar-

ing for v > 0, {vee < 0), when « <

iy noise.  In such case, a positive value ol v i
necessary to intbialize the process. Alter conver-
gence of the LMS. we must stop the identilication
ihat damages the performances.

e In the CASE al nnportant values

N
of «, (¢ > ———] the tracking s harmfol when
o> 5) :
#, N(l—a)

ST N —ay
£, 2a— N{1 —a) _
put of the real filler, {s; = ["ﬁ,f N Also here, wo
miusl stop the identilication because the observa-

P’ s the power of the oul-

tion noise ¥ so portant Lo allow the tracking.
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Figure (2) llustrates this [nnitation of the LMS. In this
ligure, we superpose the theoreticat resulls given hy
LAMS and NSLMS when & = L0 and & = 0.5 For the
LMS the tracking is Larmfnl, however the NSLMS 6
able not ouly to track this non stationarity but alzo 1o
make betler thian LMS for this markovian variation.

4.3 Optimal steady state behavior of the
NSLMS

When we compare _-'Uri\:”"”"": (10} with ;‘l-f_,f‘ T ERYRTEN
easy Lo show that the misadjustement given by NSLMS
is less than that given by LMS, However, the choiee of
i o= a doesn’t guarantee the hest performance lor all

values of ». In fact, the theoretical study of the fune-
tion fli. @, @) = MNSEMY _A7LMS shows in particnlar
thal the minimum misadjustement that corresponds 1o
the optimal step size is realized for @ = . The misad-

Justement is then given by

1
v{2 — )+ N[ — a?) [

Myspysla=a) = v+ ON]

(14)
The unplementation of the theoretical result {10), allow

us to derive the minmam misadjustement realized by
the NSLMS (or different values of @,
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Figure 3: The hest performance of the NSLMS corre-
spond to @ = a =09

In figure (3}, we plot, for three values of & the min-
imum misadjustement (,-\-'f‘j\"‘-‘"“ﬂw),,,_,-_,, versis . Here
we choose ¢ = LY for F), time variation.  All curves
show that the mininun misadjustement corresponds to
o= 0.4

5 Adaptive behavior of NSLMS:
identification of the non sta-
tionarity

In this aection, we will present the resulls of several
sttrntlations that demonstrate the good properiies of the
algorithm described by {5 — 7). The simularions are
realized for an i.4. excitaiion characterized by a power
Po=1.

The real filter used for this purpose. bas a lengih ¥ =
3 and 15 represcuted by oa first markoy model, £, =
al_ 4+ Q. We consider an adaptive filter of order 1
or 2. The power of Lhe noise Q. depends on the value
of & chosen.

5.1 Superiority of NSLMS over LMS

First, we suppose (hat the order of the non stationarivy
model 15 kuown (2= 2 = 1).



Figure (4), where the misadjustement is plotted versus
tlre normalized step size, correspond to ¢ = 0.8 and
8 = 1.5. Two values ol the step size g are used, (.01
(fig 4.b) and 0.05 (fig 1.¢).

The analysis of the curves (4 a—d) presented, yields Lo
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Figure 4 Superionity  of NSLMS  over [LMS
(=15 ua=0%8)

the Tollowing results,

— the NSLMS has better perlformances than the LMS
{fig 1—d).

— the performances of the NSLMS don’t vary signifi-
cantly when we change the step size g,

— when we estimate the parameter, the performances of
the NSLMS are equivalent to those given when we fix the
parammeter to its exacl value 0.8 (fig 4a). In particular,
this result show that convergence of the adaptive param-
eter g(k) to 0.8 is realized for g = 0.01 and gy = 0.05.

5.2 The identificatton of the non sta-
tlonarity

The NSLMS is able o identify the non stationarivy
markoy model.

For this purpose. we use a first ovder markov fl-
ter, o= ofu_ + Y2, However, for the adup-
tive filter, we fix P o 2, 1u such a way that,
Hipr =tk + VIH (L) 4+ dolk + DHE = 1) e Xy
The vanations of Fioare charactenized hy o = 0% and
& =1

In figure (9), we show the time evolution of the param-
eters @1(k) and Gs(k) versus time, when v is fixed to its
optimal value, 0.23. The convergence of @,(k) to 0.9,
aud @, to 0, 15 obvious.

6 Conclusion

We presenl i this paper a new alponthm (NSLMS) that
takes into account the time evolution of the real filter
wlhich it must track. ‘U'he superiority of the NSLMS
over the LMS Is its ability to identily the markovian
non statlonarity of the filler Lo rench.
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Figure 3: Convergence ol the adaptive parameters
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