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ABSTRACT

LMS adaptive cancellation has been found
to be effective in various applications of active
noise control of periodic disturbances. A
deterministic periodic waveform can be used for
the reference when the period of the disturbance
is known a priori. However, the algorithm
behavior is determined by so-called Non-Wicner
solutions. This paper presents a new vector
subspace model for simplifying the analysis of
the Non-Wicner behavior. The LMS weights are
modelied as a deterministic time-varying mean
plus a zero-mean fluctuating part. Each weight
component is analyzed separately with the
subspace model.

1. INTRODUCTION

Adaptive cancellation of periodic
disturbances is required in several applications
of actve noise cancellation (i.e. noise from
rotating and reciprocating machines). Effective
control of the periodic disturbances can be
achieved using adaptive feedforward cancellation
{1-3]. Fig 1 displays the block diagram of a
feedforward congtrol system using an adaptive
filter Wi(n) to reject periodic disturbances. This
and other similar structures have been recently
proposed [1,2] without a detailed analysis of the
adaptive filter behavior.

The LMS algorithm is often used for the
adaptation because it is easy to implement and is
relatively well-understood for stochastic inputs.
A deterministic periodic waveform can be used
for reference when the period of the disturbance
is known a priori, However, the behavior of the
algorithm is significantly different than when
the reference is stochastic.  Non-Wiener [4]

solutions of the LMS algorithm occur and are due
to the non-stationarity of the sinusoidal inputs.

Shensa [5] was the first to analyze the Non-
Wiener solutions of the LMS algorithm with a
noisy reference. However, his results do not
extend to multiple sinusoidal references and to
active noise cancellation problems with filters
in the cancellation loop (Figure 1 is a Filtered-
X-LMS [6,7] structure). [8] presents a simplified
orthogonal subspace decomposition method for
the noiscless reference case. This approach is
extended here to the noisy reference case and to
noisy multiple sinusoidal references.

Il PRELIMINARIES

Let Y(n) =[y(n),y(n - D......y(n -N + )T denote
the N-dimensional reference input vector and
W(n) denote the N-dimensional tap weight
vector. W(n) is adjusted by the LMS algorithm
according to the recursion
Wn+1)=Wn)+ne(n)Y(n) (1)

e(n) = c(n)- W' (m)¥ () (2)
c(n) is an external desired signal and

N
wimYm = Iwimy@m-i+). (3)
i=1
The reference input consists of harmonically
related deterministic sinusoids in additive
white noise. Thus,
N2
y(n) = T x;,(n)+ v(o) (4)
m=1
where

X, (1) = J%[ehmm +e“jmmm], (3)



for m=1,2. N/2. v(n} is white gaussian
sequence with E[w(n)v(m)}=P,3(n -m). Each of
the sinusoidal components has power Psm . Y(n)

can be written as a signal vector X{n) and a noise
vector V(n),

Niz
Y(n) = X (m)+V(m) , (6)
m=1
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and

V(m) =[v(a)v(@ =1, ... ., MB ~N+D . (9)
Note that both the complex exponentials and dm
and dp* are orthogonal. Using (7)-(2), the

correlation matrix of Y{n) is
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K. Qm(m , (10)
Qu(m) =~ ™™ Ng at +a; dp,
T
+ 0y dpy + dydm (11
The desired (primary) waveform is the sum of
harmonically related sinusoids with different

powers and independent uniformly distributed
random phases,

Ni2 'P ; -8 4 ;
c(n) = 3 *;—p{e”pﬂm e Xorpn/ N+8, ) (12)

p=i
Thus, c(n) is wide-sense stationary.
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The analysis proceeds in two steps, based
on the equivalent modei lor the weights shown in
Fig. 2. The first step evaluates the output of the
mean system E[W(n)] t the deterministic
portion of the input (i.e. the mean responsc of
eq.(1)). The second step evaluates the correlation
function of the random portion of the output
which is due to three terms - 1) the response of
the mean weights to the random input, 2) the
response of the random system f(n) to the
deterministic input and 3) the response of the
random part B(n) to the random input V(n).

Pri Si id
I. Response of the Mean System the
Deterministic Input

Averaging both sides of eq. (1) yields

E[W(n+ )= (1P, ) - {&)QM(n)]
| \ 2 ]

x E[Wm] + pe(n)X(n) (13)
Here ¢(n) is one sinusoid with p=M and initially
ap is set to zero. Eq. (13) is identical in form t
the weight recursion for the noise-free case
analyzed in [8]. The mean filter output is given

by [9]
B w" () ELY ()] = B wT@lxm)
Pn + NPS {2 N (14)
The portion of c(n) remaining in the error e(n) is
(1+NPs/2Pn)" 1 c(n).
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The correlation function of the adaptive filter
output is given by [9]
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where Z{n-m-1) is a shifted unit step function
and is zero for n=m. Eq.(15) assumes n = m,
without loss, and takes Into account the
correladon between the present weight
fluctuations and the past vaiues of V. The
autocorrelation function of the error is



Ele(n)e(m)] = e(@)otem) - cE[ WTm) Y ()]
- om)E WT (@)Y ()] +
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For comparison with {5-eq.{29}], c¢(n) must be
modelled by a unit power sinusoid with
uniformly distributed phase. Thus,

o(m) = 2 cos[(mpm 1 Ny + 6, §, (17)
Ele(n)e(m)] = cos[mp(n - m)/ N] (18)
Using (15) and (17} in (16) yields
-2
NP
E| e(n)e{m)] = (H- 2P:) cos(xM(n -m)/ N)
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After some effort, it can be shown that (19)
agrees with [5-eq.{29)]. Note that the analysis
has verified the structural equivalence shown in
Figure 2.

Eq.(19) implies that the power spectrum of
the error corresponds to i} a primary signal
residual sinusoidal component which s
inversely proportional to the square of the SNR,
ii) A white noise component which is inversely
proportional to the factor (1+NPg/2Pp). dii) A
narrowband component, centered at frequency
M/2N, with amplitude proportional to pPp,
except in the neigborhood of frequency M/ZN
where the amplitude is inversely proportonal to
the factor (1+NPg/2Pp), iv}) A white noise
component whose spectral amplitude is pNPp.

The LMS algorithm minimizes the error e(n)
by cancelling much of the desired signal c(n},
but not all. The cancelladon of c{n) is displayed
by (i). The algorithm pays a price, however, by
introducing terms (ii)-{iv) in the spectrum of
the error signal.

For most practical purposes, {19} can be
approximated by

uP2

13
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E_e(n)e(m)] = (1 + ?:i ) cos(mM(n - m) / N)

NEE /2
+ ———=—>8(n~m) (20)
(P, + NP, / 2)
Note that the rato of error power to primary
signal power is (1+NPs/2Pn)'1. Hence, the
cancellation performance is directly
proportional to the SNR of the reference

sintusoids. This would suggest that it is
important to minimize the noise in the reference.
Multiple Pri Si id

It is shown in [9] that the dominant terms of the
autocorrelation function of the e(n) are given by

E{ e(n)e(m )} =

-2
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Eq.(21) shows that both the sinuscidal errors
and the background white noise level increase as
the number of desired (primary) sinusoids
increases. The first increase is to be expected.
The second increase is somewhat surprising.
Each cancelied primary sinusoid results in a
sinusoidal residual plus a white noise
component. Both are scaled by the level of the
primary sinusoid. Additional primary sinusocids
generate sinuscidal residuals plus additional
white noise which is uncorrelated with the white
noises caused by the other sinusoids. This
behavior is due to the orthogonality of the mean

P om(
Lp N

" components of [W(n)] [9]. Consider the special

case of P{ p = P and Pg p= Py for all p. Then (21)
simpilifies to

-2
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Compare {(20) and (22). The multiple sine wave
canceller pays a performance price. Each
additional primary sine wave increases the white
noise background floor. Notice, however, that
the ratio of the residual error power to the
primary power is unchanged.

IV. RESULTS AND CONCLUSIONS
This paper has presented a vector space
model for studying the Non-Wiener behavior of



the LMS algorithm. The model was used to study
two cases: 1) one sinusoidal reference in
additive white gaussian noise and one desired
(primary} sinusoid without noise, 2) multiple
sinusoidal references in additive white gaussian
noise and multiple desired sinuscids without
noise. The analysis results in (1) agree with [5].
The analysis results in (2) are new and provide
support for the usefulness of the model. (2)
demonstrates that the maulliple sinusoid
reference canceller can cancel multiple desired
sinewaves in the primary. However, the
backgound noise floor of the error signal grows
in proportion to the number of signals and their
relative powers.
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Fig.1 - Block diagram of feedforward control for
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