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ABSTRACT

The equalization of constant amplitude signals is consi-
dered in the scope of this paper. A criterion based on
the probability density function (pdf) of the signal of
interest is proposed. The objective is to derive a suita-
ble soft-decision scheme, more rabust than the classical
CMA algorithm that ensures recoverability of the signal.

1 Introduction

Clonstant amplitude signals are widely used in di-
gital communications for the equalization of phase-
modulated signals. In CMA algorithins one ftries to
make use of the constant amplitude property of the sig-
nals of interest. The most straightforward way is to uti-
lize: a cost function based on amplitude errors. Here we
propose one based on the probability density function
of the signal of interest. In this way we use all aprioris-
tical knowledge we have of the wanted distribution. We
will show in terms of the error function of the adaptive
algorithm that this is more robust than classical CMA.

2 Statement

The pdf of a constant amplitude signal is given in the
following terms in the complex plane C,

pa(2) = 5001zl - A) (1)

It is chosen to maximize the following criterion,

J(w) = —Bzlapa,sn, (W) (2)

where some uncertainty is modeled via the AWGN
term N, = N(0, 07). We will see that this term is impor-
tant for the performance of the adaptive algorithm. The
subscripted expectation operator describes with respect
to which random variable the expectation of the non-
linearity is realized. The final expression is given by,

’ ) 1 2. pE
J(w) = —Fzln B4, —5e 1/oelimnel (3}
?TUE
where we see that the cost function can be expressed
in terns of a non-linear average of the error. The utili-
zation of this cost function always leads to soft-decision
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type schemes. An alternative cost function as described
in [3] can be used. This cost function, which we repro-
duce here below, always leads to minimization of the
Kullback-Leibler information measure,

Jw)=—-FEa InEz e Veilamall? (d)

To}

Tts utilization is precluded here because the target
constant amplitude distribution is not discrete but con-
tinuous. The evaluation of the outer expectation, £,
is thus difficult to attain as it involves the evaluation
of integrals dependent on the data. For the case of dis-
crete distributions, this can be easily undertaken as the
integrals reduce to summations. Back to {3) and wsing
the constant amplitude property of this cost function,
we arrive at the final expression,

) = Bz {5 (4 %) <ot (3201} )

t

where Ig(+) stands for the modified Bessel function of
the first kind and order zero. We can sec from the power
series development of Ig(-} that the behaviour of J for
Iz| close to A is similar to the following orrer norin,

J(w) = EIIFZ (12 - 4)° (6)

The conventional CMA cost function i1s denoted ins-
tead as,

: (7)
The robustness of this algorithm can be justified when
we observe its behaviour for large values of the input
data modulus, jz|. The classical CMA function is bi-
guadratic. Hence, its gradient behaves as the third
power of the data. This may easily lead the algorithm
to divergence if the coefficient vector is far from its op-
timurmn setting. When the gradient of the classical CMA
algorithim is normalized, we get an ervor function very
close in shape to that obtained from stagtistical reference.

|z}* — A°

erm(w) = EZ




3 Dertvation

The coefficients are updated according to the gradient
rule. The gradient of the cost function is calculated with
respect to the Hermitian of the coefficient vector,

1
Vaid = —EzVnu lIlEAo—28_1’/aflz“n“|n {8)
o

e—l/aflz—aarz (z _ ag)*x

= _EZEAQ I: (9)
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In the following, it will be understood that by Ez
we mean that the expectation is carried not only with
respect to the random variable z, but with respect to ail
random variables depending on the data vector x, such
as z = witx. This last equation can be re-formulated in
the following fashion, where the quality functions ¢{:, )
are defined,

i
C_l,'{”'rzlz_““l

(10)
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These functions give an indication of how close one

value of the input sequence is to the wanted distribn-
tion. The gradient is then expressed in terms of these

functions as,

VandJ = l/gfﬁ?ngnQ(z:ao)(z _ﬂ'o)*x (Il)
If we define a generalized error functicen from the qua-
lity functions, the gradient can be expressed as follows,
Vnd = 1jof Eze™(2)x (12}
The appearance of the generalized error for the CMA
case appears depicted in figure (3). Using the following

property, we can express (11) in a more intuitive way.
Esq(z,0,)=1 (13)

Then, the gradient becomes,

Vatd = ]./U'EEZ {(z — Ea,a09(z, a))" x (14
1/oiFz (2 —ia)" x (15)
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Figure 1: CMA cost functions.

where we have defined a regeneration function as,

e = Ea,0,q{z,0,) (16}

For the case of constant amplitude signals, this rege-
neration function is expressed as,

N ()
ao_] 24 iE
0 ;g|z|

with I; {+) the modified Bessel function of the first kind
and order 1. Note that the regeneration function only
depends ou the modulus of the input data, |z|, which
gtems from the symmetry of the wanted distribution.
The behaviour of this cost function is such as depicted
in figure {1). It preserves the phase of the incoming vec-
tor, modifying only its modutus. Small values of |z} with
respect to A lead the regeneration function close to zero.
Saturation is observed for those values larger than the
reference amplitude A. It is useful now to compare the
behaviour of the regencration function with respect to
that of the generalized error. There exists one value of
the amplitude of z for which the generalized error goes
to zero with positive slope. Around this point o, < A,
the adaptive algorithm is at equilibrium. Note that the
slope of the generalized error is linear in the modulus
of z, while that of classical CMA is cubie. This causes
that classical CMA be more sensitive. A smaller step-
size must be used to keepclassical CMA from diverging,
which is reflected in a slower convergence rate. A be-
haviour similar to that of the generalized error can be
obtained when the step-size is normalized to make the
modified gradient linear with the modulus of the input
stgnal.
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Figure 2: Generalized error functions.

4 Adaptive Algorithm

The adaptive algorithm is based on gradient techniques.
The expectation operator Ez 1s dropped so that the ave-
raging is done implicitly in the coefficient update equati-
ons, if the step-size is sinall encugh. The upgrade equa-
tions are defined as,



Weel = Wg - et (2)x (18)
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The choice of the appropriate g2 parameter has im-
portant consequences on the convergence rate. To
guarantee acquisition, the tentative variance parameter
must not be chosen too small, so that the gradient does
not deliver zero values when the values of the data amn-
plitudes are far from the wanted amplitude A. It is
important that the value of the tentative variance be
approximately matched to the noise variance at the sys-
teir output when convergence has been reached. It is
also possible to use different variances for acquisition
and tracking, but in general, we have found that reaso-
nable choices of of already guarantee fast convergence
and good performance in tracking., The generalized er-
ror functions corresponding to several values of the ten-
tative variance have been represented in figure {3). Note
that the slope of the error function deviates progressi-
vely from linearity in the lower amplitude range as the
value of ¢} increases. Also, the zero cross-point is shif-
ted leftwards. This last effect is known as constellation
shrinkage. The more linear the error function is, the
more reliability we place on the data. In the statement
of the rlassical CMA cost function, its associated error
is not in a linear relationship with the amplitude error.
This causes the usual problems of divergence for dissi-
milaritics between the actual and the target amplitude.
Modifications of the error function to make it more li-
near will always improve the behaviour of the algorithm.

5 Annex. Derivation of the cost function

In this annex, we will calculate the closed expression
for the cost function in the case of constant amplitude
signals. Let us consider the argument of the natural
logarithm (the pdf) and operate with the exponent of
the Gaussian.

Pigure 3: Generalized error functions for several o}’s.
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From now on we will define the variable & = 24 /02
Placing the expectation operator in terms of the pdf of
A, we get,

A(z) = f e 0 g (22

-

whose first and sccond derivatives arc expressed as,

w

T
A(z) = [ cos Be” 58y A(x) = ] cos” fe” < dh,
F—ar -
(23)
Integrating the first derivative by parts, it is easy to
show that,

ks
Alz) == / sin® g ¢ i (24)
—m

Therefore, we get that 4 fulfils the following differen-
tial equation,

o

Alz)+1/zA(x) = f (sin® 8 + cos® 8) " Pdf = A(x)

-
(25)
Compared with the Bessel modified differential equa-
tion,

i+ ap— (2 + 0Py =0 (26)
v =o1 L (x) + es Ko () (27)

where I,{x) and K, (z) stand for the Bessel modified
functions of the first and second kind, respectively. 1f we
particularize for n = 0 and divide by z® on both sides,
we obtain (25). It only remains now to calculate what
the constants of the linear combination are. We know
that A(0) = 2w. Hence, given that K{0) tends to oo
and that [3(0) = 1, we must have that ¢, = 27 and that
ep = (0. Substituting the value of x, the cost function is
equal to that in equation (5}.

6 Resulis

In the following figures we compare the constellation ob-
tained with the CMA algorithm and the Statistical Refe-
rence algorithm. The classical CMA algorithm usually
shows unstability associated with it when the ampli-
tude at the output of the equalizer, in the initial stages
of acquisition is very dissimilar from the target ampli-
tude. Very small step-size must be used to guarantee
that the algorithin wilt not diverge. This 18 due to
the fact that the gradient of the cost function is not



linear with the true amplitude error. It behaves ins-
tead as the third power of the amplitude, Although
this makes the CMA algorithm stable, its convergence
rate is comparatively very large. In the Statistical Re-
ference algorithm instead, comparatively larger step si-
zes can be used without making the algorithm stable.
The convergence rate is thus much faster. The gra-
dient provides here 'true’ undistorted estimates of the
amplitude error. In many of the simulations we have
carried out, it has not been possible to make the con-
vergence rate of classical CMA equal that of statistical
reference for large amplitude dissimilarities with respect
to the target amplitude. Simulations with the Statis-
tical Reference Algorithm are shown in figures (4) and
(5}. The following values have been chosen for the simu-
lations: SNR = 144B, pn = 0.0007, number of coeffici-
ents of the fractionally-spaced equalizer N = 30 (around
8 symbols), channel response ={-00.1274,0.5542,-1.0073,-
0.7313,1.4047,-0.6202,0.2371,-1.5868,-0.4015,-0.7707].
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Figure 4: Statistical Reference. Evolution of the in-
phase channel
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The convergence region of CMA is limited. If the am-
plitude of the signal is very dissimilar from the target
ammplitude, power normalization must be carried out to
ensure convergence. Due to the special characteristic of

statistical reference CM A, this is not necessary. If actual
amplitude do not differ rouch and are close to the target
amplitude, performance of both algorithm is also simi-
lar. A slightly higher misadjustient. can be observed in
CMA due to the non-linear characteristic of the error
under the same test conditions for both algorithms.
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