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ABSTRACT
Durbin's method for Moving Average (MA) estimation uses the
estimated parameters of a long AutoRegressive (AR) model to
compute the desired MA parameters. A theoretical order for
that long AR model is ∞, but very high AR orders lead to
inaccurate MA models in the finite sample practice. A new
theoretical argument is presented to derive an expression for
the best finite long AR order for a known MA process and a
given sample size. Intermediate AR models of precisely that
order produce the most accurate MA models. This new order
differs from the best AR order to be used for prediction. An
algorithm is presented that enables use of the theory for the
best long AR order in known processes to data of an unknown
process.

I.  INTRODUCTION

In looking for a safe, robust and practical solution for the MA
estimation problem, Durbin's method [1] is promising. A non-
linear estimation problem is replaced by two stages of linear
estimation. Firstly, the parameters of a long autoregressive
model are estimated from the data. Afterwards, a second
procedure uses those AR parameters as input. This method is
based on the asymptotical equivalence of AR(∞) and MA(q)
processes. Practice and simulations, however, have shown that
the best AR order is finite and depends on the true process
parameters and on the number of observations [2,3]. Non-
linear algorithms for MA estimation are not considered in this
paper, because it has been demonstrated that their performance
in finite and small samples is poor [2]. Especially the lack of
convergence or the convergence to non-invertable models
prohibits general use of those methods in the routine analysis of
time series [2,3]. However, an other two-stage method, mostly
used in the estimation of ARMA models [4,5], can also be
applied to MA estimation. The long AR model is used then to
reconstruct residuals for the process that become regressors in
an ordinary least squares solution.
   The search is for a theoretical concept to find a best order for
the long AR model as intermediate stage in the estimation of a
MA model. The usual aim is the best order for AR prediction.
However, the best order turned out to be a different one in
simulations [3] where the parameters of a long AR model have
been used to estimate MA parameters. Of course, the best AR
order is defined here as the AR order yielding the final MA
model with the highest prediction accuracy. The subject of

order selection is extensively treated in linear regression with
non-stochastic regressors. The best order for an estimated
model depends on the intended use, which shortly can be either
prediction or parameter accuracy [6]. Prediction as purpose
gives a good fit of the model to the mean response of the given
data; otherwise the smallest mean square error of the estimated
parameters will be the criterion of quality.
   In this paper, the theory for linear regression will be applied
to three different AR order selection problems. The first type is
characterised by using the AR model itself for prediction, the
second type uses the reconstructed residuals of the AR model
to find a MA model and the third type uses the AR model
parameters to compute the MA model. The theory explains that
the usual optimal AR order for prediction governs the first two
types; the third type depends on the new long AR order for
parameter accuracy. The computation of the two optimal orders
is described for known MA parameters. Simulations show that
the theoretical orders are also the best in practice. The
theoretical knowledge about the best AR order can be utilised
in a practical algorithm by adding a third stage.

II. LINEAR REGRESSION THEORY FOR MODEL
ORDER SELECTION

In linear regression, the subject of order selection is known as
subset selection or as the selection of variables. The size of the
best estimated subset depends on the intended use of that
subset model [6], which can be divided into two classes:
  -  prediction, or a good fit of the model to the mean response
for the given range of the input regressor variables
  -  a small mean square error of the estimated parameters, or an
accurate output for one specified input vector.
Both purposes will give different optimal numbers of variables
for estimated models, depending on the true values of the
parameters and their influence on the residual sum of squares.
The theory is based on the reduction in the residual sum of
squares that is found by including more parameters in the
model. The requirements can be formulated for true or for
estimated parameters of a given process.
  -  To be included in the best regression model for prediction
[6], each group of r true process parameters should at least give

a reduction of r σε
2  in the residual sum of squares, where σε

2  is

the variance of the statistically independent residuals in the

data. For estimated parameters, an additional reduction of σε
2



is added for the variance of each parameter, so the total

reduction must be greater than 2r σε
2 . The factor 2 is the magic

penalty factor in Mallows’s Cp [6] and in Akaike’s AIC
criterion for autoregressive order selection [5].
  -  In contrast, if the primary concern is accurate estimates of
the parameters, the required reduction of the residual sum of

squares for any group of true parameters is only σε
2 ,

independent of the number of parameters involved to achieve
that reduction [6]. This means that also smaller parameter
values have to be included in the best subset for accurate
parameters. Unfortunately, no good selection criterion based on
estimated parameters is available for  this class of applications.

   The selection theory for regression will now be applied to
time series. A common restriction to AR models is that they are
hierarchical, so an AR(p) model contains exactly the first p
parameters and subset models are not considered. The first
class, prediction, is used in the derivation of criteria for AR
order selection. The second theoretical class, parameter
accuracy, will be applied to AR models of a true MA(q)
process, with given MA parameters. The true AR model has
order ∞ and true AR reflection coefficients κi can be found by
computing all q+1 non-zero covariances of the MA(q) process,
adding zeros for the covariances of greater time shifts and use
the Levinson recursion [5] to compute as many AR parameters
as desired. Define a MA(q) process as:
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where εn is a series of independent identically distributed

random variables with mean zero and variance σε
2 . The

variance of the process yn can be expressed in the MA
parameters bi or the AR reflection coefficients κi as:
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The expectation of the residual sum of squares of all AR
models from AR(1) to AR(∞) can be determined. The residual
sum of squares found by including the theoretical values of the
reflection coefficients κi of an AR(p) model of N observations
of a MA(q) process is denoted RSSp. It becomes:
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The asymptotical expectation of an estimated reflection
coefficient ki

2 is approximately 1/N for high orders where all
ki of still higher orders are small, and exactly 1/N for all
reflection coefficients above the true AR process order. The
best AR order, K, for prediction is found to be that specific
order  for which all models of orders K-r have a value for

RSSK-r exceeding RSSK with at least r σε
2 , while all models of

orders K+r have a value for RSSK+r that is less than r σε
2

smaller than RSSK , for all r. Unfortunately, that order cannot
be determined easily, because the equation (3) for RSSp is
multiplicative. The correspondence between Mallows’s Cp [6]
and Akaike’s AIC criterion is used to find an asymptotical

approximation to that order K by using the generalisation of
AIC denoted GIC(p,α), [7], with penalty factor 1 for α:

             ( )GIC p RSS N p Np( , ) ln / / .α α= +                     (4)

So K is the order with minimum GIC(p,1), p=0,1,..,∞.
   The order with the best parameter accuracy M is found as the

order M for which the residual sum of squares, RSSM, is σε
2

greater than RSS∞ where all AR parameters are included. RSS∞

is equal to N σε
2  for N observations, as follows from (2) and

(3). So the expectation for RSSM is (N+1) σε
2 . This means that

the residual variance equals (1+1/N) σε
2 . If the best orders

concerned are greater than 0.1N, it is better to replace the
asymptotical quantity 1/N by its method dependent finite
sample value vi [7,8].
   Simulations have been carried out to validate those
theoretically based applications of linear regression orders to
time series. The accuracy of the finally resulting estimated MA
models is reported as the average of the Selection Error SE [3].
That is defined as a scaled expectation of the prediction error.
It is computed by applying the parameters of an MA(q’) model
estimated from yn to new and independent observations xn of
the same process as given in (1):
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The Selection Error SE(q’) of a MA(q’) model of a MA(q)
process is now defined as [3]:

                        ( )SE q N( ' ) /= −σ ση ε
2 2 1                          (6)

if all zeros of the equation � ( )B z = 0  are inside the unit circle.
For estimated zeros exactly on the unit circle, the Selection
Error is infinite unless the true process B(z) had a zero at
exactly the same location. Moreover, the Selection Error
approaches infinity for zeros close to the unit circle.
   Fig.1 gives an example of the results. The theoretically
computed optimal model orders are 12 and 20 for prediction
and parameter accuracy, respectively. The minima in Fig.1 are
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Fig.1  Average Selection Error of an AR(p) and two MA(2)
models; 1000 simulation runs; N=400, b1 = − 0.24, b2 = − 0.6



at order 12 for AR models and for MA(2) models, estimated
from the residuals of AR(p) models. The minimum SE for the
MA(2) model, estimated from the AR parameters with
Durbin’s method is at order 23. The minimum is rather flat. So
the theoretical result of 20 for the best long AR model order
was a much better approximation than the order 12 with best
AR predictions. Simulations with several other MA processes
have shown that always the calculated AR order K with
minimum GIC(K,1) is the best order for AR models used for
prediction. Likewise, the long AR model order M gives the
highest accuracy of the MA model, if the AR(M) parameters
are used to compute the MA model with Durbin's method.
   The algorithm that uses the residuals of the long AR model
to compute the MA parameters causes problems in practice.
The zeros can lay outside the unit circle or close to it. For small
sample sizes many runs give useless non-invertible results. The
best AR order in successful simulation runs is K with minimum
GIC(K,1): the best order for AR prediction. Fig.1 shows an
irregular pattern for the residual based MA(2) Selection Error.
This is caused by a small number of runs with zero’s close to
the unit circle. Remark that the minimum Selection Error is
5.12; the minimum is 2.24 for Durbin’s method and the
asymptotical minimum value in maximum likelihood theory is
2, equal to the number of estimated parameters So the use of
residuals of long AR models is not advisable in MA estimation.
Durbin’s method always gives invertible results, and also with
better quality because the Selection Error is smaller. Use of AR
residuals in ARMA estimation has the same problems with
non-invertible MA models.

III.  SLIDING WINDOW TECHNIQUE

So far, the best AR order has been determined for a given MA
process. The order can be computed by determining the
reduction of the residual sum of squares RSSM for the true
values of the reflection coefficients in (3). Unfortunately, no
AR order selection criterion can select the desired best
theoretical order M from data. Existing selection criteria are
directly or indirectly based on a transformation of the estimated
residual sum of squares as a function of the model order. An
estimated kp gives a multiplicative reduction with 1-kp

2 in the
residual variance. The problem is to detect a bias contribution
to the residual variance of about 1/N for r combined parameters
where the variance of each parameter has a contribution of
about 1/N. This would require a penalty of magnitude 1+1/r ,
instead of the penalty factor 2 in AIC. The difficulty is that a
penalty less than 2 gives enormous costs of overfit [7]. If the
best order is higher than the order with minimum prediction
error, no existing order selection criterion is appropriate to
select that order from given observations.
   An algorithm has been developed that uses a preliminary
estimate of the MA model, as if it were the true process, to
determine the order of the long AR model. Firstly, the
preliminary MA model is estimated with Durbin’s method with
the sliding window technique [2,3], using a long AR model
with length greater than twice the selected AR order K. In
Fig.1, it is demonstrated that poor MA models can be found if

the long AR order is too low, too high AR orders are less
dangerous. Moreover, the theoretical requirement for the best
order for parameter accuracy showed that this order is the same
or higher as the best order for prediction. Therefore, a first
guess is made by taking the number of MA parameters plus
two times the selected AR order for prediction as the
preliminary long AR model. The stages of  the algorithm are:

First stage: AR
Estimate AR models of orders 0 to N/2 from the data with the
Burg AR estimation method. The Yule-Walker method for AR
estimation gives sometimes slightly better results, but it will
become much worse for zeros close to the unit circle [3]. So for
unknown data, Burg’s method is to be preferred. Select the AR
order K, preferably with FSIC [8] which is the only criterion
that can deal with AR models of order N/2. In using other
criteria than FSIC, the result in simulations is worse and the
maximum AR order has to be limited to N/3 or even to N/4 to
evade selection peculiarities.

Second stage: SW
Use Durbin's method to estimate MA(q) models of order 1 to a
maximum chosen candidate order L; each MA(q) model is
estimated from a long AR model with 2K+q parameters, a
sliding window that depends on the selected AR order K and
on the number of MA parameters q that is computed; if 2K+q
is greater than N/2, this latter order will be used. Compute the
residual variances (with backforecasting [3]) by substituting the
estimated MA(0) to MA(L) parameters in the data models. Use
these residual variances to select the MA order Q with
minimum GIC(Q,3), with α=3 in (4), or a similar criterion;
GIC(p,3) is similar to AIC but has a better balance between
underfitting and overfitting risks [7]. The asymptotical
derivation of properties of GIC(p,α) for AR models is also
valid for MA models.

Third stage: SW+
Treat the preliminary model MA(Q) as if it is the true process
and determine the best long AR order M for that 'given' MA(Q)
process and recalculate the MA(Q) parameters from this final
AR(M) model.

Third stage NL:
Compute the non-linear MA model of order Q of the second
stage with the least squares algorithm using backforecasted
residuals. This model is only accepted if all zeros are in the
invertible region; otherwise, the model found in the second
stage is kept. This non-linear third stage is introduced to
investigate the possibility of selecting the structure with some
basic algorithm and to improve the preliminary estimate with
an approximate maximum likelihood estimator. In this way, it
is possible to compare the behaviour of the best asymptotical
estimator with the SW and SW+ algorithms in finite sample
simulations.

IV.  SIMULATION RESULTS

Theoretical derivations have an asymptotical validity, but the
finite sample performance can only be determined in practice



or calibrated in simulations. Many different processes have
been simulated, for various process orders and sample sizes.
Table 1 presents the results for 50 observations on MA(4)
processes. Those processes have been generated by using
‘reflection coefficients’ [1 β −β β −β] and compute the MA(4)
parameters with the Levinson recursion [5]. By taking β less
than 1 in absolute value, this ensures that all true processes are
invertible. The average results of AR, SW, SW+ and NL have
been investigated. For a comparison, the best theoretical long
AR order has been used in the simulations to compute the
MA(4) model of the true order, so neither AR nor MA order
selection took place; this result is given in the Tables in the row
‘theory’.

Table 1: Selection Error of estimated and selected MA models
as a function of β, with various algorithms. N=50.

β −0.8 −0.4 0.0 0.4 0.8

SW 12.00 8.25 1.56 12.00 12.24
SW+ 12.52 7.98 1.19 11.86 12.66
NL 44.20 97.70 93.17 105.26 31.45

theory 12.22 5.24 0.00 7.69 13.44
AR 21.88 10.02 2.14 13.82 23.32

It is remarkable that the third stage SW+ is hardly an
improvement in comparison with the second stage SW; but it
would be if K or 3K had been used for the long AR order
instead of 2K+q. For β= − 0.8 and 0.8, the selection error of
SW was even better than that of the row ‘theory’. The
explanation is that the maximum considered AR order is N/2,
so 25 in Table 1 and for those values of β the best AR order is
greater than 25. So even ‘theory’ is not based on the best AR
order then; one may say that 50 observations is not enough for
a reliable estimation in those examples.
   This can be demonstrated in Table 2, where the MA(4)
example with β= − 0.8 has been simulated for different sample
sizes. Again SW+ with third stage gives no useful improvement
of the SE, so the third stage can be omitted. NL is almost as
good as SW for N=1000. Eventually, for still greater N, it may
become the same or even slightly better. The theoretical
asymptotical value for the selection error is 4 if the correct
MA(4) model would be selected in all simulation runs. SW is
already quite close to that limiting value. In most examples, NL
performs poorly with often estimated zeros outside the unit
circle or close to it, giving a non-invertible model or a high
value for the SE. Only for large samples, say N>1000 and for
true zeros close to the unit circle, some examples have been

simulated where NL was somewhat better than SW, but even
then the risk of non-invertible models remained.
   A study of selection losses for AR modelling has been carried
out [7]. In comparison with AR modelling, the accuracy of the
finally selected MA models with the sliding window technique
for Durbin is remarkably good: the Selection Error for
estimated MA models is close to the theoretical minimum
value 4 for MA(4) processes. This might be caused by the fact
that MA models are computed from AR parameters, without
considering the residual variance of the MA model. That
variance is only computed afterwards for an order selection
criterion. Not using the residual sum of squares twice is an
advantage in MA selection in comparison with AR. As a
consequence, MA order selection gives a smaller average
contribution to the SE of the best fixed order model than AR
order selection.

V.  CONCLUDING REMARKS

A theoretical value for the best order of a long AR model in
Durbin’s method of MA estimation has been derived. It is
characterised as the order yielding AR parameter estimates
with the smallest mean square error. Simulations show that MA
models calculated from the parameters of that long AR model
have the smallest error of prediction. However, if the residuals
of a long AR model are used, the best AR order is the order
with the best AR prediction accuracy, which is lower.
The sliding window technique performs very well for all
sample sizes where enough information is available. If the true
correlation is not yet damped out for N/2, no method is very
accurate but the performance of SW remains reasonable.
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Table 2: Selection Error of estimated and selected MA models
as a function of N, with various algorithms. β= - 0.8.

N 20 50 100 200 500 1000

SW 16.84 12.00 9.93 8.65 6.52 6.12
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NL 127.38 44.20 15.23 13.63 11.10 6.54

theory 13.76 12.22 9.33 7.22 5.15 5.60
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