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ABSTRACT

The paper introduces a novel definition of the differen-
tial cepstrum. It is based on the interpolation sequences
in the frequency domain and exists also for the singular
signals with no spectral inverse. Besides, we showed an-
alytically and statistically that such a differential cep-
strum exhibits lower cepstral aliasing when calculated
with the DFT comparing to the calculation without in-
terpolation. On average, the improvement is 39 % in
case of the interpolation to the half-intervals and 46 %
in case of the quarter-intervals.

1 INTRODUCTION

Since the basics of generalised superposition and homo-
morphic systems have been established in [2], a vari-
ety of new approaches emerged in this non-linear signal
processing framework. All of them rely upon the cep-
stra calculation, transforming non-linear operations of
multiplication or convolution from the original time do-
main to a superposition in the cepstral domain [3]. The
main advantage of such a transform is that simple lin-
ear filtering techniques become applicable in order to
separate components originally joint by a non-linear op-
eration. The separation works perfectly in a so-called
convolutional model [9], which can be described typi-
cally by the problem of echo cancellation [3]. This fea-
ture has been utilised in several schemes in speech, geo-
physics, sonar, biomedicine, image processing, system
identification, etc. [1, 4]. Recently, the properties of
convolutional model have been used extended aiming at
decomposing the superimposed signals [7, §8].

The basic type of the cepstrum used in all the afore-
mentioned approaches is, because of its strictly defined
inverse, the complex cepstrum. The easiest in the for-
ward computation, however, is the differential cepstrum.
Though, all the cepstra suffer from the drawback, like
cepstral aliasing, singularities, and a necessity of the
phase unwrapping. In the sequel, we are going to re-
veal a novel approach diminishing some difficulties of
the differential cepstrum calculation. Section 2 defines
the differential cepstrum on the interpolated sequences,
Section 3 introduces a computer algorithm whose results
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are analysed with respect to cepstral aliasing, a short ex-
ample is given in Section 4, while Section 5 concludes
the paper.

2 DIFFERENTIAL CEPSTRUM WITH IN-
TERPOLATED SEQUENCES

Suppose an exponential sequence x(n) in the factorized
z-transform presentation:
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A= 2O 5]] a0

lay, r = N, — M,, and ay, by, ci, and dy for M; inner
and M, outer zeros, and N; inner and N, outer poles,
respectively (|ak|, |bx|, |ckl|, |dk| all less than 1). Refer-
ring to derivation in [5], the definition of the differential
cepstrum yields:
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and after employing the DFT implementation:

. N—
J k —k(n-1) 3)
Nk: k ’

{L‘ =

where W&k(n_l) = eI Fk(n=1) and prime denotes differ-
entiation.

Eq. 3 hides a potential danger: if transform X (k) con-
tains zero-valued samples, the expression becomes sin-
gular. On the other hand, X((k)) means a deconvolution
that may be calculated even in case of a singular ker-
nel if using the frequency-interpolated sequences [6]. As
known [3], such an interpolation is obtained by padding
the time-domain sequences of length N, z(n), with N
additional zeros. Actually, while only the interpolated



sequences are of importance [6], they appear when trans-
forming the sequence z(n)W/%; to the frequency domain,
with % identifying a fraction of the frequency-domain
sampling distance. Thus, the interpolation may be re-
alised to any place inside the frequency sampling inter-
vals. We will show the effects with interpolation to the
half (i = 2) and to the quarter-intervals (i = 4).

Introduce a novel definition of the differential cep-
strum with the interpolated sequences:
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The properties of newly defined differential cepstrum
remain the same as stated in [5], additionally, we can
observe some new ones when computation is done using
the DFT:

Property 1: For i > 2, mgd)(n) becomes a complex-
valued sequence.

Property 2: For the principal, non-aliased version of the
differential cepstra, the following is valid:
argd)(n) =—2@Dn+1);n>0,

2\ (n)=—z@Wn+1)W, " n<0.
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Property 3: x;" (n) exists also in case of singular kernel

X (k).

Property 4: mgd) (n) exhibits lower cepstral aliasing com-
paring to the calculation without interpolation, on
average.

3 COMPUTATIONAL ALGORITHM

The best computational performance is obtained with
the DFT-based calculation:
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For the ease and clarity, calculation in Eq. 5 slightly
modifies definition 4: namely, the resulting cepstrum is
shifted anticausally by one sample, as well as it is mul-
tiplied by -1. Hence, with no attention paid to aliasing:
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where the notation comes from Eq. 1.
Unfortunately, the DFT-based computation corrupts
the correct cepstral values from Eq. 6 with cepstral

aliasing. The actual outcome is as follows:
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The terms with £ in Eq. 7 depict the effect of cepstral
aliasing.

3.1 Analysis of cepstral aliasing

The computation based on interpolated sequences elim-
inates threats of the singular kernel. At the same time,
it influences the level of cepstral aliasing. Let’s study
it considering Eq. 7. Contributions of every individual
zero and pole build up the final result in the same man-
ner. Therefore, the extent of aliasing may be judged
only referring to one of them. For example, the con-
tribution of one of the inner zeros may be expressed in
case of no interpolation as:
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when aliasing is included, and as:
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with no aliasing.
A multiplicative error may be obtained as a ratio of
expressions 8 and 9, i.e.
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It appears with the same value at any cepstral position.

In case of interpolation, the error ratio is computable
in the same way. Thus, comparing the aliasing error in
the interpolated case against the one calculated without
interpolation:
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Expression 11 is evidently in favour of the interpolated
differential cepstrum if aj is a real zero (supposedly,
N even). In case of a conjugate complex pair of zeros
lar|eTi®* the interpolated solution gives strictly lower
aliasing if:

—JaxlY < cos N, (12)

which is depicted with shaded area in Fig. 1.

With similar reasoning, we can analyse any other type
of interpolation as well. The quarter-interval one pro-
duces complex-valued results, thus separating the even
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Figure 1: For the zeros and poles in the shaded area,
the differential cepstrum with interpolation gives strictly
lower aliasing

and odd aliasing periods into the real and imaginary
part of the result, respectively. Besides, a condition sim-
ilar to that one from Fig. 1 is valid.

We have evaluated the level of aliasing statistically.
A sample of 28 real ECG signals of length 48 was col-
lected randomly from the standard American Heart As-
sociation Database. Determining the spectral roots, we
calculated the correct differential cepstra for all the sig-
nals. Then, we applied the DFT solution without in-
terpolation, and with interpolation to half- and quarter-
intervals. The aliasing error was estimated with the first
norm between the correct cepstra and their aliased ap-
proximations (Table 1).

| Type of calculation | First norm
No interpolation 258.14
Interpolation to half-intervals, i = 2 157.09
Interpolation to quarter-intervals, : = 4
(real part) 165.12
Interpolation to quarter-intervals, i = 4
(imaginary part) 139.09

Table 1: Comparison of the first norm of errors with
different types of the differential cepstrum calculation

Table 1 shows that an average decrease of the aliasing
error of 39 % is achieved in case of interpolation to half-
intervals, and of 46 % in case of interpolation to quarter-
intervals.

4 A SHORT EXAMPLE

To illustrate the performance of the interpolated differ-
ential cepstrum, an ECG signal of length 64 has been
processed. The original signal is shown in Fig. 2 in

parallel with its differential cepstrum. The cepstrum is
plotted in solid line for the interpolated approach ac-
cording to Eq. 5, ¢ = 2, whereas dotted line depicts
the exact cepstral values, and dashed line represents the
values calculated via the DFT without interpolation.
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Figure 2: An ECG signal (top) and its differential cep-
stra (bottom): with interpolation — solid line, without
interpolation — dashed line, exact values — dotted line.

Afterwards, the ECG signal was made zero-mean and,
thus, singular for the definition of Eq. 3. However,
Eq. 5 permits calculation even in case of singularity.
The differential cepstrum obtained is depicted in Fig. 3
with solid line, whereas dotted line represent the exact
cepstral values.

5 DISCUSSION AND CONCLUSIONS

The novel definition of the differential cepstrum brings
twofold benefit: it eliminates problems with the singular
signals (e.g. the zero-mean signals), at the same time,
however, the cepstral aliasing is diminished on average.

Referring to the noise study in [6], the interpolation
slightly improves the signal-to-noise ratios in the decon-
volution procedure. It is, therefore, expected that this
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Figure 3: Differential cepstrum of a singular ECG signal:
calculated with interpolation — solid line, exact values —
dotted line.

fact must also contribute to a greater robustness of the
differential cepstrum as defined here.

All the advantages encountered are also preserved
with the polycepstra defined on interpolated sequences.
The fact may be used with benefit in the system identi-
fication approach based on the higher-order cumulnats
and polycepstra [4].

Finally, the separation of successive aliasing periods in
case of interpolations with i > 2 into two sequences, i.e.
a real and an imaginary one, suggests a possible further
decrease of aliasing by introducing a scheme with more
than two-component complex numbers.
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