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ABSTRACT

This paper considers the application of MA cumu-
fant enhancement to the identification of the para-
meters of a causal nonminimum phase ARMA(p, g)
system which is excited by an uncbservable inde-
pendent identically distributed (IID} non-Gaussian
process. The method proposed in this paper is
based on the double MA method of [1]. The cumu-
lant enhancement is used to improve the cumulants
of the two intermediate MA models which result
from the decomposition of the original ARMA((p, ¢)
model. Simulation results are presented to demaon-
strate the effects of cumulant enhancement on the
estimated ARMA parameters,

1 Introduction

Consider a real stationary random process {y(#)}
satisfying the following differnce equation:
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where {w(n)} is an unobservable, stationary, zero-
mean, D, non-Gaussian process and #{n) is an
additive noise process which is independant of the
#(n) and is assumed to be zero-mean Gaussian and
perhaps coloured. This paper deals with the prob-
lern of cstimating the ARMA model parameters
ali),i = 0,...,p and 6{1),t = 0,...,¢ from just the
noisy chservations of the output process y(n).

A number of different linear methods to solve
this problem have been reported in the literature
[1, 2, 3]. The method of [1] is particularly interest-
ing because it decomposes the problem of ARMA
parameter estimation to two MA parameter estim-
ation problems. In this paper we follow the method

of [1], which we reler to as the double MA method.
After summarising the main steps of the double MA
algoritlim, this paper considers the enhancement of
the cumulants of the two MA models [4] that res-
ult from the decomposition of the original ARMA
parameter estimation problem. The enhanced cu-
mulants can then be used for the estimation of the
parameters of the two MA models.

2 The Double MA Method

The transfer function corresponding to model (1)
is given by
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The z-transform of the third-order cumulants of
{y(n)} arc given by the [ollowing equation [5]:
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In [1}, it was shown that the problem of estimating
the ARMA(p, g) parameters can be reduced to two
MA cstimation problems. According to [1], equa-
tion (4) can be written as
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In the time domain equation (5) becomes
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where S(g) is the finite domain of support of the
third-order cumulants of MA({g) processes. As re-
ported in [1], equation (6) can be used to estimate
the coefficients a3(7, 7) and ba(i, ) which are then
considered as third-order cumulants of MA mod-
cls corresponding to the AR part and the MA part
of the ARMA model respeclively. At this stage
we make use of the MA cumulant enhancement
method of [4] to obtain enhanced sets of cumulants
ay (1, 7) and b3 .(,5) which can then be used for
patameter cstimation.

3 MA Cumulant Enhancement

The error in the estimation of cumulants involved
in equation (6), results in error in the cstimated
cocfficients a3(7, 7) and bs(4, j). However we know
that in theory these coefficients can be regarded
as cumulants of some MA(p) and MA(g) processes
respectively. The theoretical properties of the coef-
ficicnts, can be used by the MA cumulant enhance-
ment method [4], to reduce the error of the estim-
ated coefficients.

The MA cumulant enhancement method is an it-
erative method based on the concept of Composite
Property Mappings [6. 7]. Here we briefly describe
the algorithm for the enhancement of the coeffi-
cients as{é, 7). The procedure for the coefficients
bs3(i,7) is identical. We use the estimated cocffi-
clents as(i, 7) to form the following vectors:

an = [aa{n — p,n),ea(n—p+ 1,0}, ..,
as{p — 1,n), as(p, n.),(],...,[)T. {7)

Also, for 0 < d < p we define as ag the following
voector:

ag =[0,...,0,3(0,p), az(1, p).
of
o3(2,p)s ... ea(p.p), 0, ... 0] (8)

The vectors ag and ay have 2p 4+ | elements each.
Finally, the vectors defined by equations T and 8
are used Lo construct the following matrix:
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Agp is a (2p+ 1) x (2p + 1} matrix. The rank
of Agpis p+1 (Rank Property) [4] and addition-
ally it has a theorelical lincar structure which is

dictated by the theorctical symmetries of the coef-
ficients a3(4, 7) (Structure Property).

With the use of SVD we can implement a map-
ping F,41, which maps a full rank matrix X to
the matrix Fp41(X) which is the *nearest” mat-
1ix to X with rank p + 1. More specifically, let
X e RUEHDX2H]) whose SVT) is given by,
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Theo (sce [6, 8]) the property mapping can be
defined as,

p+1
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For the second property, we scek a mapping Fa,
that maps a given matrix X to the “nearest” mat-
rix Fa(X), which has a linear structurc charac-
terised Before presenting a mapping correspond-
ing to the structure property it is instructive to
formally define the structure of the matrix Agp-
Suppose T denotes a linear transformation from
RpH1)x(2pH1) 5 REZPHDEPH) gch that if x =
T'{X) then x is the concatenation of column vectors
of X. Then there exists a (2p+1)2x (p+1){p+2)/2
matrix A (called the characieristic matriz) such
that 7'(C) = Ad. The matrix A has rows which
either have all their elements zero, or one element
eqnal to one and Lhe rest zero (A is a sparse mat-
rix). by matrix A [6, 4]. Such a mapping is given
in {6] as,

FalX) =T "A[A'A]TIA T(X)). (12)

We deline 1he composite property mapping F as
follows:

f: .'FA.?'}J.J,.].. “3)

We can construct property mappings JF, and F
corresponding to the two properties so that cvery
(2p+1) x (2p+1) matrix is mapped to the “nearest”
matrix possesing the desired property. Starting
from the initial coellicient matrix Ag p we obtain a
sequence of matrices A3.Pm according to the rule

Azt = F(F (Asp™). (14)
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Assuming that the iterative algorithm converges
the resulling matrix has been shown to consist of



true cumulants of some MA(p) model. Even if the
iterative algorithm is stopped before convergence
has been achieved, the final matrix is closer to a
matrix with both the prescribed properties.

Alter performing cumulant enhancement, on
both as(i,7) and b3(%,7), any MA parameter es-
timation method can be used for the estimation
of the ARMA parameters a(z),¢ = 0,...,p and
b{i),i = 0,...,q. o order to study the effect of
cumulant enhancement on the estimated paramet-
crs, here we use the same approach with [1] for the

estimalion of the unknown parameters:
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The same method is used to cstimate the a(i),i =
0,....p with respect to the az(i, 7).

4 Numerical Simulations

Monte Carlo simulations are provided to demon-
strate the effect of MA cumulant enhancement on
ARMA parameter estimation. The following signal
models have been used in the simulations:

Signal model I

z(n) — 0.052(n — 1) - 0.62(n —2) =
u(n) — 1.25u{n — 1)
y(n) = z(n) + v(n) (17)

The poles of the system are 0.8 and -0.75. The
zero of the system is 1.25. This is a causal
non-minimum phase system.

Signal model I1

z(n) —22z(n— 11+ 1.772(n — 2)
—0.520z(n — 3) = u(n) — 1.250u{n — 1)
y(n) = 2(n) + v(2) (18)

The poles of the system are (.8 and 0.7 + j0.4
{(modulus=0,806226). The zero ol the system
iz 1.25. This is a non-minimum phase model
with Ali-Pass factor.

Signal model I: 2000 samples

Parameters i Double MA

Enhanced

(1) = —0.030

0.061 £ .304

—{.080 £ 0.187

a(2) = —0.600

—0.788 £ 0.421

—.834 £ 0.228

| 5(1) = —1.250 | —1.027 £ 1.359 || —1.267 +

0.4 Sg

Table 1: Mcan +/- Standard deviation avcraged
over 50 Monte Catlo runs. SNR=50dB’s.

Signal model II: 4000 samples

Parameceters | Double MA ” [Fnhanced

(1) = —2.200 | —1.558 + 0.098 || —1.655 % 0.079

a(2) = 1.770 0.927 4 0.148 1.521 £ 0.133

@(3) = —0.520 | —0.171 £ 0.086 || —0.377 £ 0.092

[B{1) = -1.250 | —2442 £ 1.119 || -1.112 % 0.137 |

Table 2: Mean +/- Standard deviation averaged
over 50 Monte Carlo runs. SNR=50d B’s.

The driving sequence u(n) follows a zero-mean, I[ID
exponentially distributed process with cp,(0) = |
and ¢3,{0,0) = 2. The additive noise process #(n)
is assumed to be white, Gaussian and independent
of z(n). The signal to noise ratio is 50dB’s. The
results are averaged over 50 Monte Carlo simula-
tions.

Simulation resulls for the non-minimum phase
signal model | are presented in table 1. The num-
ber of output samples in each Moute Carlo run is
2000. The table shows that use of enhanced cumu-
lants for the estimation ol the AR parameters re-
duces the variance of the estimates. In the case of
the MA paramcter the improvement oblained after
cumulant enhancement is more significant both in
bias and variance.

Results for the signal model II are presented in
table 2. In this case the number of output samples
in cach Monte Carlo run is 4000. The AR para-
meters abtained after cumulant enhancement have
lower variance and are less biased than those ob-
tained without cumulant enhancement. Once again
the improvement is more significant in the case of
the MA parameter.

5 Conclusions

This paper considered the problem ol ARMA para-
meter estimation using only third-order cumulants
of the output process. The double MA method
[1] for ARMA parameter estimation decomposes



the estimation problem into two MA estimation
sub-problems. In this paper we considered the ap-
plication of MA cumulant enhancement to remove
the estimation error from the cumulants corres-
ponding to the MA and AR part of the ARMA
model. Numerical results were presented show-
ing that the introduction of cumulant enhancem-
net into the double MA method can result in more
accurate ARMA paramelers.
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