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ABSTRACT

The characterization and linear time-variant processing
of the higher-order almost-periodically correlated time-
gseries in the fraction-of-time probability framework are
considered. At first, the characterization in the tem-
poral domain is presented by exploiting the expression
of the temporal moment function as a sum of complex
sinusoids whose amplitudes and frequencies are contin-
uous functions of the lag vector. Then, the character-
ization in the frequency domain is considered. Finally,
for both random and nonrandom linear systems, the in-
put /output relationships in terms of gencralized cyclic
remporal moment functions and generalized cyclic spec-
tral moment functions are stated. As special cases, lin-
ear almost-periodically time-variant systems as well as
systems performing time-scale changing are also treated.

1 INTRODUCTION

In the last years, the theory of second-order wide-sense
cyclostationarity has begun to be gencralized to a the-
ory of signals exhibiting higher-order wide-sense cyclo-
stationarity (WSCS) [1]-[5]. For such signals there ox-
ist higher- than second-order time-invariant transforma-
tions that convert into spectral lines (whose frequencies
are called cycle frequencies) the hidden periodicities due
to some operations, such as modulation, sampling, cod-
ing, and multiplexing. Signals exhibiting WSCS are said
to be almost cyclostationary when the set of all cycle
frequencies is countable. They can be characterized in
the temporal domain in terms of cyclic temporal mo-
ment and cyclic temporal cumulamt functions, which are
the Fourier coefficients of the temporal moment func-
tion and the temporal cumulant function, respectively.
Moreover, since the cyclic temporal moment functions
are continuous functions of the lag vector in the origin,
guch signals can also be characterized in the frequency
domain in terms of cyclic spectral moment functions and
cyclic polyspectra [1].

A wider class of nonstationary signals is that of the
higher-order almost-periodically correlated (APC) sig-
nals for which the cyclic temporal moment functions are
not necessarily continuous functions of the lag vector in
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the origin. In such a case, the set of cycle frequencies
is not necessarily countable and a spectral characteri-
zation in terms of Fourler transforms of the cyclic tem-
poral moment functions is not easy. The class of APC
signals includes, as a special case, that of the almost-
cyclostationary signals. Moreover, chirp and polyno-
mial moduolations as well as exponential modulation
and some linear time-variant transformations of almost-
cyclostationary signals give rise to APC signals. It is
worthwhile to peoint out that the adopted definition of
APC signals is in agreement with that given in [6}, [7]
with reference to second-order statistics. Moreover, note
that in [6], [7], the entire theory is practically limited to
APC signals with second-order cyclic temporal moment
functions that are continuous functicns of the lag pa-
rameter in the origin {almost-cyclostationary signals).

The present paper deals with the characterization
and linear processing of the higher-order APC sig-
nals. Specifically, with reference to the fraction-of-time
(FOT) probability framework, it is shown that the tem-
poral moment function can be expressed as a sum of
complex sinusoids whose amplitudes and frequencies are
continuous functions of the lag vector. Then, start-
ing from such a representation, the characterization in
terms of generalized cyclic temporal moment functions
and generalized cyclic spectral moment functions is pre-
scnted. Subsequently, the way in which the higher-order
statistics of APC time-series change as thoy are pro-
cessed by random and nonrandom {in the FOT proba-
bility sense) linear time-variant systems is investigated.
Nonrandom systems are those that for every determin-
istic (i.e., constant, periodic, or polyperiodic) input
time-series deliver a deterministic output time-series.
They include the lincar almost-periodically time-variant
(LAPTYV) systems as well as the systems that performn
a tire-scale changing [4]. Random systems are all the
titne-variant transformations that cannot be modeled
as nonrandom. They include chirp modulaters, mod-
ulators whose carrier is a pscudo-noise sequence {as in
the spread spectrum modualation), channels introducing
tie-varying delays, and systems that perform a time
windowing [5].



2 N-TH ORDER ALMOST-PERIODICALLY
CORRELATED TIME-SERIES

In the FOT probabhility context, a continuous-time pos-
sibly complex-valued time-series z(t) is said to exhibit
Nth-order wide-sense cyclostationarity with cycle fre-
quency a # 0, for a given conjugation configura-
tion, if the Nth-order cyelic temporal moment function
(CTMF)
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is not zero for some 7 [1. In (1), 7 = [r1,...,7n]T
4

and = [zUh (2}, ... 2"~ (#)]T arc column vectors, {-)

denotes infinite time averaging, and (=), represents op-

tional conjugation. If the set
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is countable for each T, the time-series is said to be
almost-perindically correlated {for the considered con-
jugation configuration) [6], [7], und the almost-periodic
function defined as

Rx(t:T)N é Z CR;(T)NGJ2ﬁat (3)
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is referred to as the temporal moment function.
In the case where the set

A2 A (4)

reR”

is conntable, the time-serics «(#) is said to be wide-
sense almost-cyclostationary and, moreover, the func-
tion R {7)x turns out to be continuous with respect to
T [1].

Almost-cyclostationary time-series can be character-
ized in the frequency domain by the -fold Fourler
transform 8% (f)x of the CTMF, which is called the
Nth-order cyclic spectral moment function (CSMF) and
can be written as [1]

Sa(flv = SS(FIN6(F1 — ), (5)
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where 8(-) is Dirac's delta function, f = [fi, ... fv]T,
1 £ (2,..,1]T, and prime denotes the operator that

transforms a vector w = [w,...,wy]T into w’ £
[-ml,.,.,urN_l]T. The function SE{f")w, referred to as
the Nth-order reduced-dimension CSMF (RD-CSMF),
can be expressed as the (N — 1)-fold Fourier transform
of the Nth-order reduced-dimension CTMF defined by
sotting & = 0 into {1). Such a characterization is
not appropriate for those APC time-series that are not
almost-cyclostationary since the lack of continuity of the
CTMFs can lead to infinitesimal RD-CSMFs.

A nseful characterization of the APC time-series in
the frequency domain can be introduced under the as-
sumption that the set A5 is continuous with respect to
7. In such a case, it can be shown that the temporal
moment funetion {3) can be written as

:Ra:(t:T)N = Z :R:B.C(T)J'\-"Ej.z”&dr}t, (6)
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where W denotes a countable set, the lag-dependent cy-
cle frequencies a (T} are continnous functions of r defin-
ing the support in the (n, 7) space of the CTMF, that
is,

supp {RE(T)n} = {(a,‘r) € Ar x RY : Re(r)n £0}

- U {(a,f) ERXRY : a=ac(r), R ;eo},
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and the functions
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referred to as the generalized CTMFs (GCTMFs), are
continupus functions also when the CTMFs are not. It is
useful to point out that the limit operation is introduced
into definition {8} to avoid discontinuities in Ry o (T)w
in correspondence of those T such that. for some (' # (,
ag (1) = ag(T).

It can be easily shown that CTMFs and GCTMFEs are
related by the following relationships:

Ra(r)n = lim R+ Ay, (9)
Roltin = Z R c{(TInda—agin. (10)
CEW

where 8, =1 for vy =0 and 4, =0 for v # 0.

Let us naote that for the almost-cyclostationary time-
series the functions ¢ (1) are independent of T and then
there exists a onec-to-one correspondence hetween the
elemenis ¢ of the set W and the cycle frequencies o
belonging to the set 4. Moreover, for each a and ¢ such
that a¢(7T) = «, it results that

Rac(m)n = Ra(T)n. (11)

The N-fold Fourier transform of the GCTMFE
oy 4T
Seclf)n = /R R (Tine 2 Tdr (12)

is called the Nth-order generalized CSMF (GCSMF). It.
can be expressed as

Sa(flv =
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where N
Reolt'in = Rac(T)n 0 {14)

Tin=
is the reduced-dimension GCTMFE.
Let us note that, accounting for (11), for the almost-
cvclostationary time-series the GCSMFs are coincident
with the CSMFs.

3 EFFECTS OF LINEAR SYSTEMS ON APC
TIME-SERIES

3.1 Random and Nonrandom Linear Systems
In the FOT probability framework, random and nonran-
dom systems are possibly complex (and not necessarily
linear) systems that. for every deterministic (i.e., con-
stant, periodic or polyperiodic) input time-series, deliver
a nondeterministic or deterministic output time-series,
respectively [4], [5].

With reference to the class of linear systems, a ran-
dom system can be characterized by the transmission
function

-+ 00
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wherec H{s, f) and (s, f) are, for each s, a complex
function and a monotonic {with respect to f) real func-
tion, respectively [3].

By inverse Fourier transforming both sides of (15},
one obtains the expression of the impulse-response func-
tion

hit,u) = /H’o his,t) & ¥(s,t,u)ds, (16)
- ¢

o
where g denctes convolution with respect to t, h(s,t)

is the inverse Fouricr transform of H (s, f), and
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The nonrandom systems can be viewed as special
cases of the random ones where

H(s. f) = 3 H,(H)é(s - 0) (18)
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and
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undetermined elscwhere,

where §? is a countable set. Therefore, for nonrandom
systems, the transmission function and the impulse-
response function can be written as [4]

H(F A = 3 Ho(f) 600 = e (f)) (20)
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and
Ht,u) = Z hr,{t) QQ ot ) (21)

e
where fi; () is the inverse Fourier transform of H,{f)
and

T, (t,u) 2 U(s,tu)),_ ., ocfl (22)
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3.2 Input/Output Relations for Linear Systems

Let us consider a random Hnear system excited hy
an APC time-series (¢} whose set of Nth-order lag-
dependent cycle frequencies, for the considered conju-
gation configuration, is {a¢(T}} cp, -

The Nth-order CTMF at the cycle frequency 3 of the
output time-series y(¢) can be derived accounting for (1)
and (16) :

Ry (7w / (Hh (sn'r")

f Re, g(v)wﬂ?.,_r,[s (T,v)n dvds, (23)
T CEW,
where & denotes NV-dimensional convolution with re-
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Note that, in the particular case of nonrandom systems,
{23) reduces to
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where 33*;,0(1',1;);\.— is defined according to (22) and (24).

When the set of output cycle frequencies for each
fixed value of 7 is countable and the set {B?r(f)}qewy
of potential output lag-dependent cycle frequencies is
known, accounting for (9), the input/output relation-

ship in terms of GCTMFEs can be detived from (23):

:Ry,,,(r)N=/ (Hh (en,rn)
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where

T+AT (T + AT, vin. (27)



Moreover, taking the N-fold Fourier transform of both
sides of (26}, one obtains the input/output relationship
in terms of GCSMFs:

hY
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where (—), denotes an optional minus sign to be
considered only when the optional conjugation (),

is present, P 2 [{—)]/\_1,...,t—];\,r/\,r\.']T, Tf)r' )(8,/\)
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Let us note that in general the determination of the
set {34(7}} w, is not straightforward. However, for
LAPTYV systems and systems performing a time-scale
changing such a sct can be easily singled out. Specif-
ically, since for LAPTYV systems the impulse-response

function is given by
Bitu) =D ho(t — u)e* ¥, (30)
Tl

accounting for (25), it results that
Bp(m) = aelT) + p 771, (31)
where £ € W, and p € Y, and hence (26) reduces to
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Morcover, for linear time-invariant (LTI} systems, {32)
becomes

N
Ryl T)n = (H h“}"(m)) s Roe(thn.  (33)
T

n=1

where () is the impulse-response function of the LTI
system and

B(T) = ag{T). {34)

Finally, as regards the systems performing a time-scale
changing, the impulse-response function is

hit,w) = §{u ~ at), (35)

where a # 0 18 the scale factor, the set £ contains just
one element, and

SR MORST LU
Therefore, from (23) it follows that
Ba(T) = aacleT), £e W,, (37)
and hence (26) reduces to
Ryn(T)n = Rae(at)n. (38)
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