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This communication addresses the problem of estimat-
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is shift invariant, i.e., Ma, . (n;l1,. .., {2p) is not a func-

ing the parameters of a polynomial phase signal using
an original approach: although this signal is clearly non
stationary, some of its high order moments are shift in-
variant. The condition verified by the delays of these
“stationary” moments is derived in the noiseless and
noisy case. It is demonstrate that the only identifiable
phase parameter is the highest order coefficient, the es-
timation requiring moments of order at least the double
of the phase degree. An algorithm relying on these high
order moments is derived and its performances are pre-
sented and compared to a recent algorithm.

1 INTRODUCTION

This article addresses the estimation of the parameters
of a polynomial phase signal. This problem, encoun-
tered in different radar systems, is usually solved using
a time frequency analysis or phase-only algorithms. For
a detailed introduction on this topic see for example [4].
This paper investigates a parametric solution based on
statistical properties of this signal: although 1t is clearly
non-stationary, some of its high order moments are shift
invariant. This property is exploited for the retrieval of
the phase parameters.

2 POLYNOMIAL PHASE SIGNALS HIGH
ORDER MOMENTS

2.1 The noiseless case

We define a noisy polynomial phase signal y,, as:

M

z, = Aexp{j Z agni},

g=0

Yn = Tpn + €y, (1)

where ag 1s a random variable uniformly distributed in
the interval [0,27) and e, is a complex independent
identically distributed (iid) noise. The 2p-th order mo-
ment of the signal z, is defined as:

P 2p

A
Aoyp) =B Hzn+lk H It

k=1 k=p+1

szyz(n;ll, N

tion of n. In this case, the index n will be omitted in
Mo, . (n;lh, ... lap). Tt is worthy to note that the defi-
nitions obtained with a different number of conjugated
and unconjugated terms lead to a 2p-th order moment
of x,, that equals zero.

Proposition 1 The signal z, in (1) is (l1,...,1ls)-
stationary if the following condition, referred as

H(p, M), holds:

H(p, M) :¥ge{l,....M—1},> (i —1i,,) =0 (3)
k=1

In this case the stationary moments equal:

Mopo(lr,. . lop) = A r exp{jam Z

k=1

— i)} (4)

Proof: The 2p-th order moments M, »(n;l1, ..., 1l2p)
equal A% exp{j¢} with:
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This polynomial of the variable n is not a function
of n if Vvm = 1...M, b,, = 0. b = 0 implies
nyzl aq(9) O (- ZZ_I_;) = 0. This equation has
to be verified Va,. This implies H(p, M) that implies
that the others b, also equal 0.

The coefficient by equals nyzo ag > b _ (1 - Biy)-
Application of H(p, M) to this equality terminates the
proof of equation (4). [ |

The only identifiable parameter of a polynomial phase

signal from its stationary moments is the coefficient of



highest degree, aps. The estimation of all the a; can
be performed using the iterative algorithm consisting
in: estimate ayr, multiply the signal by exp{—jazn™},
estimate apr_1,...

The identifiability of the parameter ays is precised by
the following proposition:

Proposition 2 The coefficient apr of the signal in (1)
1s only identifiable from the stationary moments of order
higher or equal to 2M . The stationary moments of order
2M of x, equal:

MZM,CL‘(Oalza o 'aZZM) =

M
AMexp{(-1)" iMay []lusr)} ()
k=1

Proof : Consider the two p x p diagonal matrices C' =
Diag{li,..., Iy}, D = Diag{lp41,...,l2p}. The condi-
tion H(p, M) can be rewritten in term of these matrices
as:

H(p, M) :Vge{l,....M — 1}, tr{C?} = tr{ D%}, (6)

where tr{M} denotes the trace of the matrix M. If
we apply the Hamilton-Cayley theorem, [2], to these
matrices, we obtain:

14 14
CP =3 ¢, CPr~9=0, D"=> d, D7 =0, (T)

g=1 g=1

where ¢; and dj are the coefficients of the characteris-
tic polynomial of C' and D. The Faddeev method, [2],
allows the recursive computation of these coefficients us-
ing the relations:

k-1

ke = tr{C*} =3 egtr{C* 1 k=1...p (8)

g=1

k—1
kdy = tr{D"} =3 " dytr{D" "} k=1...p (9)

g=1

with ¢ = 1 and dy = 1. The recursive application of
H(p, M) to these equations gives:

Vge{l,...,min(M —1,p)}, ¢4 =d,. (10)

Consider first the case p < M. The trace of the dif-
ference of the two equalities (7) together with (10) and
H(p, M) gives tr{C?} = tr{DP}. If we now multiply
equations (7) by C and D, the trace of the difference
of these two equalities will give tr{C?*T1} = tr{Dr+1}.
Tterating, we then obtain Vg, tr{C?} = tr{D?}. The
application of this result with ¢ = M to (4) terminates
the proof of the first assertion of the proposition.

Consider now the case p = M. In this case, the trace
of the difference of the two equalities (7) together with

(10) and H(M, M) gives

tr{C’M} — tr{DM} = (e — dar)tr{l} (11)
M M

= M=M= ()M T o) (12)
k=1 k=1

Application of this result with {1 = 0 to (4) terminates
the proof. [ |

2.2 The noisy case

In the noisy case, we will consider the moments of the
signal y, at lags for which z, is (l1,...,[sp)-stationary.
For brevity, we introduce the ordered k-uple L con-
stituted by a subset of k elements of (I1,...,0,). L
is a k-uple of (l,41,...,l2,), L the complement of
Ly in (I1,...,0,) and ZZ the complement of £} in
(lpt1,...,15p). Consequently, we will use the conden-
sated notation Moy . (n; Lk, L}) for the 2k-th order mo-
ment of z,. Using the circularity of e, and the hypoth-
esis on ap distribution, we can expand the 2p-th order
moment of y, as:

MZp,y(ﬁpaEZ) =

> Mok o(n; Lo, £3) Magp_i e (Ci, Cy)- (13)
Li L}

Unfortunately, the (1, .. ., ls)-stationarity of z,, does
not imply the (Lx, £})-stationarity of z, and then the
({1, ..., lyp)-stationarity of y,. However, (13) suggests
the following proposition:

Proposition 3 For all solutions of H(p, M) wveri-

fying {l1,.... L} 0 {lpyq, ..., lopt = 0 we have
Moy y(ly, .. lop) = Mop o (b, ..., Iap). If moreover p =
M:

Monr,y (0,12, ... lanr)
M
AMexp{(-1) jMay [] usn}  (14)
k=1

Proof: This result is a direct consequence of (13) and
proposition 2 [ |

2.3 The set of stationary moments delays

We will limit our study to the minimal order moment:
p = M. According to the previous sections, we need
to find the 2M-uple verifying: H(M, M), {l1,...,lar} N
sty oy = 0. We suggest to find them using
2M — 1 loops to test condition H (M, M). In this con-
text, 1t is 1mportant in order to reduce the computa-
tional cost of the scan to define a set of minimal size
containing the ;. A reasoning similar to [6] leads to the
following ordered set:

h=00<l< <y, 1 <lygr < <oy (15)

An important remark is that if ({1,{s, ..., laps) verifies
H(M,M) and {11,...,ZM}Q{ZM+1,...,12M}I@,Vq;é
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A direct consequence is that the set of interest can be

,qlapr} also verifies these two conditions.

reduced to only its coprime members. An element of
this set will be called a root of order M. Table (1) gives
the 11 first roots of order 3.

3 SAMPLE ESTIMATES
PROPERTIES

STATISTICAL

The stationary moments of the signal under scope may
be estimated on the basis of a single realizations of the
time series y,, n = 1...N. The sample moment func-
tion can be estimated as:

N—Inm

y 2l

n=1—lpm 1€L,MELY

MZp y([’P’[’ y”+ly:+ma (16)

where [y = max{L, U L3}, I, = min{L, U £;} and
Ny =N -y + 1,

The statistical properties of these estimates 1s a fun-
damental problem. It is straightforward that the sam-
ple moment function (16) is an unbiased estimator of
Moyp o (Lp, L£5). The next question is the convergence in
probability of M), x(ﬁp,ﬁ*) to Map 5 (Lp, £;). The an-

swer is given by the follovvmg proposition:

Proposition 4 The sample estimate Mﬁyx(ﬁp,ﬁ;‘,)
tends to Moy (Lp, L) in the mean square sense as N
goes to infinity.

Proof: See [1] for a demonstration. [

4 Estimation algorithm

4.1 Mathematical derivation

The last point is the derivation of an algorithm for the
estimation of the coefficient aps of the signal (1). This
estimation will rely on a matching between estimated
stationary moments and their theoretical expression.
Consider a root of order M: (0,l2,...,laps). The es-
timation procedure will exploit the moments associated
to the first L multiples of this root. For purpose of no-
tational simplification we use the following notation:

A
m(q) = Monry(0,qls, ... qloar), ¢=1,...,L. (17)
Proposition 3, implies:
m(q) = A*Mexp{je™an}, ¢=1,...,L, (18)

where
M

Xpr — (—1)MMGMHZM+k. (19)
k=1
To avoid a function minimization, the algorithm will
consist on a least squares fit between the angles of the
estimated moment m(q), ¢ = 1, ..., L and their theoret-
ical value. According to (18,19), this solution is:

) Soay ¢ angle(n(q))

aM = M L
(_1)MM sz:l ZM+k3 . Zq:l q2M

The previous expression assumes phase unwrapping
during the computation of the angles. To avoid this
problem we will require that |[¢May | < 7w ¢=1,..., L.
Thus, the condition required to avoid any ambiguity
about aps 1s:

T
lan| < 7 . (20)
LTI, Lok

For notational simplification, this algorithm will be
referred in the sequel by SMF (stationary moments fit-

ting).

4.2 Computer simulations

In order to evaluate the performances of SMF, computer
simulations using an hyperbolic phase signal (M = 3)
of N = 20 samples have been drawn. The phase coef-
ficients are: az = 0.0005, as = 0.007, a; = 0.003 and
ap = 1. The mean square error (MSE) of as has be
estimated using 500 noise realization for each signal to
noise ratio.

The first question 1s the determination of the param-
eter L. The first order 3 root (3,3,1,1,4), has been
selected and MSE curves associated to various L have
been computed. If we arbitrarily assume that an aver-
age on at least N/3 samples is required in (16), the
maximum value of L 1s given by the integer part of
2N/ (3l — 3l,,). Figure (1) gives the results of these
simulations: the MSE decreases as L increases. Conse-
quently, the maximum value of L will be retained in the
following simulations.

The next problem is the selection of the root. Figure
(2) represents the MSE curves for the first three roots
(3,3,1,1,4), (4,5,1,2,6), (5,7,1,3,8) with respectively
L = 4, 3 and 2. The root giving the lower MSE is
(4,5,1,2,6). This result illustrate the dual influence of
the parameter L and the deviation I3y — I,,,. The MSE
decreases when both these quantities will increase. In
this sense, the pair (4,5, 1,2, 6) represents a compromise
that will be retained in the sequel.

Finally, the performances of SMF have been compared
to the Cramer Rao lower bound derived in [5] and to a
parametric method for analysis of constant-amplitude
polynomial phase signals: the Discrete Polynomial-
Phase Transform (DPPT), [4]. The first step of this
method is a transformation of the signal into a single
tone signal. This i1s performed iteratively by M — 1
phase differentiations. At each step, the phase differen-
tiation of the current signal is obtained multiplying the
sample at instant n by the conjugated sample at instant
n — 7. The coefficient aps is then related to the global
maximizer of the transformed signal periodogram. The
framework derived in this paper allows a novel inter-
pretation of the DPPT. In particular, it can be eas-
ily demonstrated that the DPPT retrieves azs from the
global maximizer of the periodogram of estimated 2%
order moments of x,,.



L I3 1y Iz g | =3llsls
3 3 1 1 4 -12
4 5 1 2 6 -36
5 7 1 3 8 -7
5 8 2 2 9 -108
6 9 1 4 10 -120
6 11 2 3 12 -216
To7 1 4 9 -108
T8 2 3 10 -180
T 11 1 5 12 -180
9 9 3 3 12 -324
9 10 1 6 12 -216

Table 1: 11 first roots of order 3.
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Figure 1: MSE for as using SMF. The root is

(3,3,1,1,4) and L = 2,3 and 4.

Figure (3) gives the Monte-Carlo simulations results
and the Cramer Rao lower bound. The DPPT has been
implemented using an optimization algorithm initialized
by the estimate given by an FFT of the transformed
signal zero padded to 2°. The parameter 7 equals N/M.

For SNR>10dB, performances of the proposed algo-
rithm are very close to the CRLB and performances
of DPPT correspond to the values predicted by the
theoretical analysis derived in [4]. For SNR<10dB,
DPPT exhibits the traditional breakdown whereas the
efficiency of SMF remains almost constant. This result
could be explained by the fact that the moments or-
der involved are respectively 2™ for DPPT and 2M for
SMF, these last ones being estimated with better preci-
sion.
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100

901 /////”

@
S
T
3
\

)
S -2
w 70
2]
=
S , — (45,1,2,6), L=3
-7 / - - DPPT

6o / ~ - CRLB

50

20 . . .

0 5 10 30 35 40

20
SNR (dB)
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