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ABSTRACT

This communication addresses the problem of estimat�
ing the parameters of a polynomial phase signal using
an original approach� although this signal is clearly non
stationary� some of its high order moments are shift in�
variant� The condition veri�ed by the delays of these
�stationary� moments is derived in the noiseless and
noisy case� It is demonstrate that the only identi�able
phase parameter is the highest order coe�cient� the es�
timation requiring moments of order at least the double
of the phase degree� An algorithm relying on these high
order moments is derived and its performances are pre�
sented and compared to a recent algorithm�

� INTRODUCTION

This article addresses the estimation of the parameters
of a polynomial phase signal� This problem� encoun�
tered in di	erent radar systems� is usually solved using
a time frequency analysis or phase�only algorithms� For
a detailed introduction on this topic see for example 
���
This paper investigates a parametric solution based on
statistical properties of this signal� although it is clearly
non�stationary� some of its high order moments are shift
invariant� This property is exploited for the retrieval of
the phase parameters�

� POLYNOMIAL PHASE SIGNALS HIGH

ORDER MOMENTS

��� The noiseless case

We de�ne a noisy polynomial phase signal yn as�

xn 
 A expfj
MX
q��

aqn
qg� yn 
 xn � en� ���

where a� is a random variable uniformly distributed in
the interval 
�� ��� and en is a complex independent
identically distributed �iid� noise� The �p�th order mo�
ment of the signal zn is de�ned as�

M�p�z�n� l�� � � � � l�p�
�

 E

��
�

pY
k��

zn�lk

�pY
k�p��

z�n�lk

��
� �

���

zn is said �l�� � � � � l�p��stationary if M�p�z�n� l�� � � � � l�p�
is shift invariant� i�e�� M�p�z�n� l�� � � � � l�p� is not a func�
tion of n� In this case� the index n will be omitted in
M�p�z�n� l�� � � � � l�p�� It is worthy to note that the de��
nitions obtained with a di	erent number of conjugated
and unconjugated terms lead to a �p�th order moment
of xn that equals zero�

Proposition � The signal xn in ��� is �l�� � � � � l�p��
stationary if the following condition� referred as
H�p�M �� holds�

H�p�M � � �q � f�� � � � �M � �g�
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In this case the stationary moments equal�

M�p�x�l�� � � � � l�p� 
 A�p expfjaM

pX
k��

�lMk � lMk�p�g� ���

Proof� The �p�th order moments M�p�x�n� l�� � � � � l�p�
equal A�p expfj�g with�
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This polynomial of the variable n is not a function
of n if �m 
 � � � �M � bm 
 �� b� 
 � impliesPM

q�� aq
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 �� This equation has

to be veri�ed �aq� This implies H�p�M � that implies
that the others bm also equal ��
The coe�cient b� equals

PM

q�� aq
Pp

k���l
q
k � lqk�p��

Application of H�p�M � to this equality terminates the
proof of equation ����
The only identi�able parameter of a polynomial phase

signal from its stationary moments is the coe�cient of



highest degree� aM � The estimation of all the ak can
be performed using the iterative algorithm consisting
in� estimate aM � multiply the signal by expf�jaMnMg�
estimate aM������
The identi�ability of the parameter aM is precised by

the following proposition�

Proposition � The coe�cient aM of the signal in ���
is only identi�able from the stationary moments of order
higher or equal to �M 	 The stationary moments of order
�M of xn equal�

M�M�x��� l�� � � � � l�M� 
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Proof � Consider the two p � p diagonal matrices C 

Diagfl�� � � � � lpg� D 
 Diagflp��� � � � � l�pg� The condi�
tion H�p�M � can be rewritten in term of these matrices
as�

H�p�M � � �q � f�� � � � �M � �g� trfCqg 
 trfDqg� ���

where trfMg denotes the trace of the matrix M � If
we apply the Hamilton�Cayley theorem� 
��� to these
matrices� we obtain�

Cp �

pX
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cqC
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dqD
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where ck and dk are the coe�cients of the characteris�
tic polynomial of C and D� The Faddeev method� 
���
allows the recursive computation of these coe�cients us�
ing the relations�

kck 
 trfCkg �
k��X
q��

cqtrfC
k�qg� k 
 � � � � p ���

kdk 
 trfDkg �
k��X
q��

dqtrfD
k�qg� k 
 � � � � p ���

with c� 
 � and d� 
 �� The recursive application of
H�p�M � to these equations gives�

�q � f�� � � � �min�M � �� p�g� cq 
 dq� ����

Consider �rst the case p � M � The trace of the dif�
ference of the two equalities ��� together with ���� and
H�p�M � gives trfCpg 
 trfDpg� If we now multiply
equations ��� by C and D� the trace of the di	erence
of these two equalities will give trfCp��g 
 trfDp��g�
Iterating� we then obtain �q� trfCqg 
 trfDqg� The
application of this result with q 
 M to ��� terminates
the proof of the �rst assertion of the proposition�
Consider now the case p 
 M � In this case� the trace

of the di	erence of the two equalities ��� together with

���� and H�M�M � gives

trfCMg � trfDMg 
 �cM � dM �trfIg ����
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Application of this result with l� 
 � to ��� terminates
the proof�

��� The noisy case

In the noisy case� we will consider the moments of the
signal yn at lags for which xn is �l�� � � � � l�p��stationary�
For brevity� we introduce the ordered k�uple Lk con�
stituted by a subset of k elements of �l�� � � � � lp�� L�k
is a k�uple of �lp��� � � � � l�p�� Lk the complement of

Lk in �l�� � � � � lp� and L
�

k the complement of L�k in
�lp��� � � � � l�p�� Consequently� we will use the conden�
sated notation M�k�z�n�Lk�L

�
k� for the �k�th order mo�

ment of zn� Using the circularity of en and the hypoth�
esis on a� distribution� we can expand the �p�th order
moment of yn as�
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Unfortunately� the �l�� � � � � l�p��stationarity of xn does
not imply the �Lk�L

�
k��stationarity of xn and then the

�l�� � � � � l�p��stationarity of yn� However� ���� suggests
the following proposition�

Proposition � For all solutions of H�p�M � veri�
fying fl�� � � � � lpg � flp��� � � � � l�pg 
 � we have
M�p�y�l�� � � � � l�p� 
 M�p�x�l�� � � � � l�p�	 If moreover p 

M �

M�M�y��� l�� � � � � l�M�

A�M expf����MjMaM
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Proof� This result is a direct consequence of ���� and
proposition �

��� The set of stationary moments delays

We will limit our study to the minimal order moment�
p 
 M � According to the previous sections� we need
to �nd the �M �uple verifying� H�M�M �� fl�� � � � � lMg�
flM��� � � � � l�Mg 
 �� We suggest to �nd them using
�M � � loops to test condition H�M�M �� In this con�
text� it is important in order to reduce the computa�
tional cost of the scan to de�ne a set of minimal size
containing the lk� A reasoning similar to 
�� leads to the
following ordered set�

l� 
 �� � � l� � � � � � lM � � � lM�� � � � � � l�M � ����

An important remark is that if �l�� l�� � � � � l�M� veri�es
H�M�M � and fl�� � � � � lMg� flM��� � � � � l�Mg 
 �� �q 	




�� fql�� ql�� � � � � ql�Mg also veri�es these two conditions�
A direct consequence is that the set of interest can be
reduced to only its coprime members� An element of
this set will be called a root of order M � Table ��� gives
the �� �rst roots of order ��

� SAMPLE ESTIMATES STATISTICAL

PROPERTIES

The stationary moments of the signal under scope may
be estimated on the basis of a single realizations of the
time series yn� n 
 � � � �N � The sample moment func�
tion can be estimated as�

MN
�p�y�Lp�L
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yn�ly
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where lM 
 maxfLp 
 L�pg� lm 
 minfLp 
 L�pg and
Ns 
 N � lM � lm�
The statistical properties of these estimates is a fun�

damental problem� It is straightforward that the sam�
ple moment function ���� is an unbiased estimator of
M�p�y�Lp�L

�
p�� The next question is the convergence in

probability of MN
�p�x�Lp�L

�
p� to M�p�x�Lp�L�p�� The an�

swer is given by the following proposition�

Proposition � The sample estimate MN
�p�x�Lp�L

�
p�

tends to M�p�x�Lp�L�p� in the mean square sense as N
goes to in�nity	

Proof� See 
�� for a demonstration�

� Estimation algorithm

��� Mathematical derivation

The last point is the derivation of an algorithm for the
estimation of the coe�cient aM of the signal ���� This
estimation will rely on a matching between estimated
stationary moments and their theoretical expression�
Consider a root of order M � ��� l�� � � � � l�M�� The es�
timation procedure will exploit the moments associated
to the �rst L multiples of this root� For purpose of no�
tational simpli�cation we use the following notation�

m�q�
�

 M�M�y��� ql�� � � � � ql�M�� q 
 �� � � � � L� ����

Proposition �� implies�

m�q� 
 A�M expfjqM�Mg� q 
 �� � � � � L� ����

where

�M 
 ����MMaM
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To avoid a function minimization� the algorithm will
consist on a least squares �t between the angles of the
estimated moment �m�q�� q 
 �� � � � � L and their theoret�
ical value� According to �������� this solution is�

�aM 
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The previous expression assumes phase unwrapping
during the computation of the angles� To avoid this
problem we will require that jqM�M j � �� q 
 �� � � � � L�
Thus� the condition required to avoid any ambiguity
about aM is�

jaM j �
�

LMM
QM

k�� lM�k

� ����

For notational simpli�cation� this algorithm will be
referred in the sequel by SMF �stationary moments �t�
ting��

��� Computer simulations

In order to evaluate the performances of SMF� computer
simulations using an hyperbolic phase signal �M 
 ��
of N 
 �� samples have been drawn� The phase coef�
�cients are� a� 
 ������� a� 
 ������ a� 
 ����� and
a� 
 �� The mean square error �MSE� of �a� has be
estimated using ��� noise realization for each signal to
noise ratio�
The �rst question is the determination of the param�

eter L� The �rst order � root ��� �� �� �� ��� has been
selected and MSE curves associated to various L have
been computed� If we arbitrarily assume that an aver�
age on at least N�� samples is required in ����� the
maximum value of L is given by the integer part of
�N���lM � �lm�� Figure ��� gives the results of these
simulations� the MSE decreases as L increases� Conse�
quently� the maximum value of L will be retained in the
following simulations�
The next problem is the selection of the root� Figure

��� represents the MSE curves for the �rst three roots
��� �� �� �� ��� ��� �� �� �� ��� ��� �� �� �� �� with respectively
L 
 �� � and �� The root giving the lower MSE is
��� �� �� �� ��� This result illustrate the dual in�uence of
the parameter L and the deviation lM � lm� The MSE
decreases when both these quantities will increase� In
this sense� the pair ��� �� �� �� �� represents a compromise
that will be retained in the sequel�
Finally� the performances of SMF have been compared

to the Cramer Rao lower bound derived in 
�� and to a
parametric method for analysis of constant�amplitude
polynomial phase signals� the Discrete Polynomial�
Phase Transform �DPPT�� 
��� The �rst step of this
method is a transformation of the signal into a single
tone signal� This is performed iteratively by M � �
phase di	erentiations� At each step� the phase di	eren�
tiation of the current signal is obtained multiplying the
sample at instant n by the conjugated sample at instant
n � � � The coe�cient aM is then related to the global
maximizer of the transformed signal periodogram� The
framework derived in this paper allows a novel inter�
pretation of the DPPT� In particular� it can be eas�
ily demonstrated that the DPPT retrieves aM from the
global maximizer of the periodogram of estimated �M

order moments of xn�
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Table �� �� �rst roots of order ��

Figure ��� gives the Monte�Carlo simulations results
and the Cramer Rao lower bound� The DPPT has been
implemented using an optimization algorithm initialized
by the estimate given by an FFT of the transformed
signal zero padded to ��� The parameter � equals N�M �
For SNR	��dB� performances of the proposed algo�

rithm are very close to the CRLB and performances
of DPPT correspond to the values predicted by the
theoretical analysis derived in 
��� For SNR���dB�
DPPT exhibits the traditional breakdown whereas the
e�ciency of SMF remains almost constant� This result
could be explained by the fact that the moments or�
der involved are respectively �M for DPPT and �M for
SMF� these last ones being estimated with better preci�
sion�
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