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ABSTRACT

In this paper we present a statistical characterisation of
the Wigner-Ville transform of k-nvisc. The results show
that the positive and the negative valucs of the Wigner-
Ville transform may be separately considered k-distributed
random variables with small distribution parameters. The
characterisation has been  done  analytically, but
simulations have shown a great agreement with our
theoretical model.

1 INTRODUCTION

The detection of signals corrupted by noise is a very
common problem in signal processing. A typical example
appears when a pulse is emitted and there are expected
echoes from the propagation medium, as occurs in radar
and ultrasonic non-destructive evaluations. In these
situations, the echoes very often appear corrupted by non-
Gaussian noise. It is necessary to distinguish between the
cchoes from the propagation medium and the echoes from
anomalies in the medium, this can be done by using the
Wigner-Ville transform (WVT) [1]. In these cases the
statistical characterisation of the WVT of noise can be very
useful.

The k-noise is a type of non-Gaussian noise proposed
by Jakeman [2, 3] for modelling the sea clutter in radar
applications. More recently, the application of the model to
the backscattering noise in ultrasonic non-destructive
testing was demonstrated [4, 5, 6, 7, 8, 9]. The k-nois¢ has
a k-distributed cnvelope, having a probability density
function (PDF) of the form:
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where b, and m, are the parameters of the distribution
(being m, greater than 0) and K, _; is the (m,-1)-th order
modified Bessel function of third kind. On the other hand
the phase will be considered uniformly distributed between
{} and 2m.

Changing the parameter m, (the paramecter b, is just a
scale factor equal to Z,fm,_, when the noise is unit power

normalised) in the k-distribution we can consider a wide
family of PDFs, ranging from a log-normal distribution for
m, values close to 0, 10 a Rayleigh distribution for m,
greater than [0. Thus the impulsive character of the k-
noise increases as the parameter m, approaches zero.

The WVT [10, 11, 12, 13] is a bilinear time-frequency
analysis tool very often applied 1o detection problems. In
those cases the desired signal is corrupted by noise, thus if
we are able to characterise the PDF of the noise WVT, we
will be able to design detection tests with controlled
probability of false alarm,

The scheme of this paper is the following: in Section 2
we propose an analytical model for the PDF of the k-noise
WVT. In Section 3 we obtain a characterisation of the
WVT by means of simulations and we compare it with the
theoretical predictions of Section 2. Finally we present the
conclusions of the paper.

2 ANALYTICAL CHARACTERISATION OF THE
WYVT OF K-NOISE

The characterisation of the WVT of k-noise is made by
using the works of Jakeman [2] and Shankar [7] and by
means of three theorems [5]. The three theorems are:

Theorem [: The random variable (RV) obtained as the
product of two independent k-RVs with parameter my, is
another k-RV with parameter m; less than one.

Theorem 2: The addition or difference of two random
phases uniformly distributed between 0 and 27 is another
random uniformly distributed phase between § and 2x.

Theorem 3: The RV generated by the product of two
RVs whose distributions are respectively uniform between
() and | and k-type follows another k-distribution.

As will be shown in this next section the positive and
negative parts of the WVT of k-noise will separately be k-
distributed. For clarity we will follow this notation: the
parameters of the k-notse (see (1)) will be m, and b,, while
the parameters of the positive and negative parts of the k-
distributed WVT will respectively be m,, m_, b, and b..
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Let x(n) be a k-noise whose WVT we want to
characterise. We will consider that x{n+[) and x(r) are
independent and identically distributed RVs for any !
different to zero.

If we call a(n) to the noise envelope and ¢(n) to the
noise instantaneous phase, the expression of the noise will
bc:

x(n) = u(n)-cos{d{n})

2)
Being its analytical signal:
z(n) = a(n)_e—wrm
(3
The discrete WVT can be obtained by means of [10]:
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The statistical characterisation is independent of the
value of #, thus we sclect 1 = 0, without lost of generality
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If we now define the new variables:
a'(h=2-a(l) al-h
¢ (1) = () — (D) - 4xlf
N
we can write the expression (6) in the form:
I
WV, (0,f) =a’ (@ +,a' (1) cos(¢'(1))
i=1
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If a(t) and a(-I) are statistically independent, Theorem
| demonstrates that ’({) is k-distributed with some
parameter a1,

If there are statistical independence between (/) and
@-0), it is obvious from Theorem 2 that ¢'(!) is uniformly
distributed between 0 and 2x.

Thus, the equation (8} is the summatory of the real part
of complex RVs having k-distributed magnitude and
uniformly distributed phase plus the term aZ(O). The
characterisation of that summatory (k-envelope and
uniform phase) was obtained by Jakeman [2], resulting

another k-noise with a new parameter m, that is the
product of the parameter . and the number of elements
of the summatory, then the equation (11} can be expressed
by:
WV, (0, f)=a> (D) +c-cos(p,)
9
where ¢ is a RV uniformly distributed between (0 and 2%
and c is a k-distributed RV with parameter m, = L -m, [2]
If ¢. is uniformly distributed between m and -x the RV
cos(¢,) is another RV distributed between -1 and 1.

Now, we divide the WVT into two subtransforms, one
for the positive valucs and the other for the negative ones,
This division is convenient because very often the desired
signal to be detected is a Gaussian envelope pulse with
positive WVT[12]. This positivity implies that in practice
we should use a positive threshold for detection purposes,
so the probability of false alarm of the detector will be
fixed only by the positive values of the WVT of noise and
the probability of detection by the negative ones, then

WV,(0,F) = WV (+) - WV (=)

where:
. 2 P 2
wv(+)={‘ cos(g.) +a*(0) if con(p,) +a’0)>0
0 others
e 2 I 2
W(ﬁ}:{c (-cos(9, ) ~ a2(0) if cos(@,) +a’(0) <0
0 others

(10)

Theorem 3 demonstrates that the RV resulting from the
preduct of two RVs, one having k-distribution and another
a uniform distribution between 0 and | is another k-
distributed RV. Thus, il a*(©) could be neglected and
cos(¢.} were uniformly distributed, the values different to
zero of the subtransforms WV(+) and WV{-) would be k-
distributed.

The distribution of cos(d.) may be approximated by an
uniform distribution, this approximation is specially good
in the central values of the interval [-m,m]. We have
confirmed by means of simulations that the influence of the
non-uniformity of cos(d.) is valueless.

The influence of an additional term «*(0) in the
summatory has been treated by Shankar [7]. The results of
Shankar show that the influence in the summatory of k-
noise terms of a fix, great and positive additional term
implies a bias in the parameters of the model. This point
will be treated lately with the presentation of the results.

The conclusion of this section ix that the positive and
ncgative values of the WVT (without zeros) of the k-noise
can be reasonably supposed k-distributed.



3 EXPERIMENTAL CHARACTERISATION OF
THE WVT OF K-NOISE

3.1 Simulations

In order to confirm the previous proposed model, we
have made an experimental characterisation.

We have made simulations for four different kinds of
noise: k-noise with parameters m, equal 10 0.5, 1 and 3 and
Gaussian noise. For every kind of noise we have generated
25600 samples, processed in frames of 100 samples. The
noise was uncorrelated and unit power normalised in all
cases,

The algorithm utilised for the implementation of the
WVT was that proposed by Black and Boashash [10} with
the following values: length of the window analysis 15
samples, overlap between windows 14 samples and spectral
resolution 16 frequencies.

For each kind of noise we obtain two measures for the
positive values and the negative ones of the WVT: the
percentage of values, and the parameters m, and m. of the
new distributions.

The parameters m, and m. of the new k-distributions
have been obtained by using the Raghavan’s method [14].
This technique has been selected because it provides a
great accuracy in the estirnation of parameters for k-
distributions having values of m between 0.2 and 2 [15],
that are the expected results from our characterisation.

3.2 Comparison Between the Analytical Model and
the Simulation Results

We have proposed above an analytical model for the
PDF of the WVT of k-noise. In this point we are going to
confirm that the results from the proposed model and from
the simulations are coincident.

For the case of our simulations, where the analysis
window was 15 samples and the overlap 14 samples. The
expression (8) can be written

7
WV, (0,1) =a’(0) + Za'(l) -cos(¢' (1))
i=1
(1n
We are going to compare the values obtained from
stmulations for the selected measures with those ones
predicted by the model.

3.2.1 Percentage of Positive and Negative Values

From cxpression (11) we can see that we have onc term
that is always positive, az(O], and seven terms that can be
positives or negatives with the same probabilily. Suppasing
that the magnitudes of all the tcrms are similar we can
simplity our problem, thus we are going to consider that
WVL0./) is positive when the number of positive elements
of the summatory is greater than the number of negative
ones and vice versa for the negative case. Assuming
independence, the number of positive elemenis in the
summatory will follow a binomial distribution with

parameter 0.5 and number of elements equal to 7. The
mean of this binomial distribution is 3.5 (0.5*7) | 16]. Thus
we can estimate (remember that *(0) is always positive)

100
mean % of positive values: = 45=5625%

mean % of negative values: % -35=4375%

Table | shows the comparison between the theoretical
mean pereentages and the ones obtained from simulations

%+ % + % - % -
theor, | simul. | theor. | simul.
k withm,=0.5 | 56.25 | 58.75 | 4375 | 40.10

k withm. =1 56,25 | 5890 | 4375 | 39.95
k withm.=3 56.25 | 58.80 | 43.75 | 40.05
Gaussian noise | 56,25 | 58.75 | 43.75 | 40.11]

Table 1: Percentage of positive and negative values of
the WV'T of k-noise

We can observe the great agreement that appears
between the proposed model and the simulations. The
small differences are due to two effects, the first one is the
no inclusion of values equal to zero neither in the positive
values nor in the negative ones of the theoretical estimate,
and the second one is the difference between the
magnitudes of ¢*(0) and a'(?)-cos(¢'(1)). In practice the
magnitude of @*(0) is slightly superior than the magnitude
of the terms a'(D)-cos(@'(D)), then in a real case the

pereentages of positive values must be slightly superior and
the percentage of negative values must be slightly inferior
than the theoretical predictions.

On the other hand the percentages of positive and
negative values are very independent, in simulations, from
the kind of noise, which agrecs with the theoretical model.

3.2.2 Parameters m, and m._ of the k-distribution

From our model the parameter m, of the positive part
must be greater than the parameter a2, corresponding to the
negative one, because of the influence of the term a(0).
When the resuiting value of thc WVT of the k-noise is
negative the influence of the term aX(0) must be valueless
while when the result is positive this influence must be
considered. Then wc have two possible kinds of
summatories, the first one with seven RVs and the sccond
one with cight RVs. Taking into account Lhat the
parameter s is proporiional to the number of contributions
in the summatory [2], it should be expected a greater
parameter vatue for the positive part of the WVT.

In the next table we show the theoreticat parameter m
from the proposed model and the parameters m. and m.
from simulations. In the theoretical model we suppose that
the term a*(0) of the expression (10} is null.



noise m ", .
kwithm, =05} 0.52 | 0.56 | 0.51
kwithm,=1 | 0.56 | 0.64 | 0.57
kwithm,=3 }0.585| 0.71 | 0.60
(Gaussian noise | 0.59 | 0.74 | 0.65
Table 2: Theoretical estimation of parameter m of WVT for
different kinds of noise and comparison with results from
simulations

Comparing the results of Table 2, theoretical m (first
column) with the paramcters m, and rm. of the positive and
negative part of thc WVT, we can observe again a
confirmation of our proposed model. The proposed model
works better for the cases of noise having parameter m,
equal to 0.5 and 1, and it is specially good for the negative
values of the WVT. For the negative values the influence
of the term a*(0) must be very low, then the assumption of
a(0) cqual to zero is almost true. In the case of the
positive values, the influence of the term a*(0)  must
produce a bias in the parameter of the mode! [7].

4 CONCLUSIONS

The main contribution of this paper is a model for the
PDF of the WVT of k-noise. The model has been obtaincd
by means of analytical methods, but it has been validate by
simulations. Simulations show a great agreement with the
propoased model predictions.

This analytical characterisation allows the design of
signal detectors in a k-noise background using the WVT.
Based on this characterisation it has been designed a
detector for Gaussian envelope pulses [17].
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