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ABSTRACT

We propose a design method of optimal FIR filter
which sclcctively extracts the particular moving object
from other moving objects and noise. Stochastic ap-
proach is applied to the problem using the information
of signals and the probability distribution of velocity
vectors, In the method, the frequency response of the
proposed Linear Trajectory Filter (LTF) specified by a
priori information of the moving object’s shape and its
velocity vector. In addition, we derive a general formu-
lation of the problem for optimal filter design and its
solution for any signal and noise. Through some ex-
amples, it is shown that the target object is cffectively
enhanced in the noisy environment.

1 INTRODUCTION

In the study of compuier vision, detection of mov-
ing objects with specific trajectory vector (velocity and
direction) from sequences of images is very important.
Especially, in the dynamic image study, an analysis of
signal representing moving objects with fixed trajectory
vector, which is refered as linear trajectory signal (ab-
breviated as LTS), is basic for designing detection fil-
ter. Very important contribution to the design prob-
lems for LTS detection filter is made by L.T.Bruten
and others[1]-{3]. These studics address the design of
frequency selective filter whose passband contains the
specific plane including the origin. This is based on the
fact that the spectrum of LTS is contained in the plane
whose normal vector is exactly the velocity vector of
LTS. The present paper investigates the optimal filter
design for separating the target LTSs fromn other signals
using the information of object signals and the probabil-
ity distributuion of their velocity vectors. Random pro-
cess approach applicd to the problem gives the optimal
frequency characteristics.[4] Therefore, filtering process
realized in the Fourier transform domain. On the other
hand, this paper propuses an optimal FIR. filter realized
in the 3-D spatio/temporal domain.
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2 PROBLEM FORMULATION AND ITS SO-
LUTION

2.1 Analysis of Linear Trajectory Signals

A point LTS moving in the 2-D plane with velocity
V and azimuth angle ¢ draws a linear trajectory in the
spatio/temporal (x-y/t) space. A point LTS f(x,y.?)

can be written as

T—-T _ Y-y _ 1
cosfcosgp sinfcos¢g sing
G (otherwise)
(1)

where A is a real number (nouzero), (29, yo) is the initial
position of LTS at t = 0 and V = cot ¢.

Thercfore, LTS is specified uniquely by the param-
cters of (T, yp}, velocity V and direction 8. We can
treat signal f(e,y,t) as a random field for given prob-
ability distribution of @ and V. That is, the random
signal of LTS f(z,y,t) is a set of LTS whose sanple is a
deterministic signal f(z,y,t; v, %0, 0, V). Thus we will
discuss the input stechastic process as an infinite set of
deterministic siguals,

flzy,t) =

direction of motion

Figure 1: Moving object with arbitrary 2-D signal

Now we consider a moving object which is represented
by s(x, v, t), as shown in Fig.1. As we assume the shape
and signal value of the moving object are time-invariant,
then

s{z,y,t) = s(z—ut,y—vt0)



= w(z — ut,y — vt) (2)

, where (u,») represents the velocity vector
(V cosf, Vsin @).

We can treat a 2-D object in fthe same way as a
point LTS. The reason is founded by the following
fact: the spectrum of a point LTS is nonzero and has
constant valne only in the particular plane written by
uwy + vwy + wy = 0, and both a point LTS and other
maoving objects with same velocity vector have their
spectrum on a plane. We merely notice the difference
of magnitude characteristics on the spectrum plane be-
tween the spectrum of a point LTS and 2-D object.

Now, we can formulate an optimal filtering problem
for the detection of LTS, It is assumed that input ran-
dom sequence u{z,y,t) is degraded by additive noise
sequence nz,y, t), that is,

w(x, y,t) = s(z.9, 1) + n{z, 3, 1) {3)

where s(x,y,t) represents the LTS desired to be ex-
tracted and n(z,y, 1) represents the signal-independent
additive noise which includes LTSs with different veloc-
ity and/or different direction from the signal s(z,y,1).

2.2 Design of Optimal FIR Filter

The zero phase FIR filter is used as a restricted class
of optimal filter whose output is the opiimal cstimate
i(z,7,t), as shown in Fig.2. This is solved by the zero
phase smoothing Wicner filter, that is, the optimal es-
timate is represented as the following form

My M2z Ms

Smyt)= D 3. > hijkule—iy—jt—Fk)
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(4)

, where the filter impulse response kit J,k) is deter-
mined such that the performance index

e= [ BlS@) - Sl (5)

is minimized, where w indicates (w,, wy,w:), S(w) and
$(w) are the Fourier spectrum of 5(=z,y,t) and §(x,y,t)
respectively. E[] denotes the cxpectation vn random
variables of direction and vclocity, and initial position.

As we mentioned, LTS discussed in this paper is
gpecified nniquely by the parameters of initial position
(Z0,%0), velocity V and direction #. We can treat signal

sy uxy [ Filter Sty
; h{ijk}
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Figure 2: Wiener filter processing

s(z,y,t) as a random field for given probability distri-
bution of # and V. That is, the random signal of LTS
s(z, y,t) is a set of LTS whosce sample is a deterministic
signal s{z,y,%; 2o, v, 8, V).

The power spectrum of stochastic signal s(z,y,1) is
also the random process

a0 2
/ff s{z,y, t)e_j(“”z+”““+”‘”d$dy(it .
—o0

(6)

If the probability density functions pv (V), pe(8) of
random variables V, # are given, we can obtain the
power spectrum of random input stochastic process by

|S(w)i* =

Pyy(w) = f ’ [_ " 18(@:0, V)1 po(B)py (V)a0aV. (7)

We can see that the spectrum of LTS is nonzero only
in the particular planc vwz + vwy +w; = 0. When we
compute the values of power spectrum Py, (w) by the
eq.(7), it is preferred to transform the random variables
(8, V) to the velocity random variables (u,v). Therefore,
eq.(7) is rewritten by

Pes(w) = //:M|S(w;u, 0)|° p(u, v)dudy (8)

, where the probability density function p{u,v) is given
by the following transform

_ oy (V)pe(0)

plu,v) = T (9

Furthermore,
P, (w) (10)

=47 |W (we, w,)|? [f $uwe +vwy +wy )p(u, v)dude

where W{w,, w,) is the Fouricr spectrum of w(z,y).

Now let us decomposc noise signal n(x, y, t) into noise
moving object nq(x,y,t) with different velocity vector
from the signal s(z,y.t) and white noise ny(x,y,t).
Then the Fourier spectrum of the input signal u(x, y, t)
is represented by the following cquation from eq.(3),

Ulw) (11)
= S(w:Z0,%0,8, V) + N1(w; 20,90, V') + Na(w)
= S(w; 8, V)expljq} + Ni{w; 8V ) exp{jr}+ Na2{w)
where ¢ = w,To + wy¥g, T = weay + wyya. In the fre-
quency domain, the error ¢{z, y,t) that results from the

estimate $(z, y,t) of the signal s(«,y, 1) can be described
by

E(w) S(w) — S(w)
S(w:8,V)exp{jq}—H(w)U{w)

M(w) exp{jq} + L{w) exp{jr} + K{w)(12)

It~



M(w)=S(w; 8V ){1- H{w)} (13)
L{w)=—N(w; 0. V') H{w) (14)
K(w)=—Ny{w)H(w) (15)
, where
H{w) (16)
ZI: i Z h :Js exP{ (Wz+3wy+ kwt)}
—M;j=—Mzk=—

Addltmnally, the power spectrum of the estimation error
e[z, y,t} is written by

| B(w)f?
= MM*+LL*+KK*42Re[ML* exp{j(g — r)}
+2Re[LK " exp{jr }+2Re[K M exp{—jg}] (17)

where the symbol * means conjuguate operation. The
error evaluation function e can be derived by substi-
tuting eq.{17) into eq.(3}). It should be noticed that
the function exp{jq¢},exp{jr} is periodic with respect to
¢, 7. Since the aim of LTF is to extract the LTS with a
particular velocity vector, initial position (#¢,7q) of the
object is not our concern. We then assume the {zg,y0)
is distributed uniformly. That is, the signal s(z,y,t)
is statistically independent of noise n;i(z,y, t), therefore
we can derive the uniferm distribution of ¢,r. The ex-
pectation of the periodic function exp{jg},exp{jr} on
Zu, Yo T, ¥y 18 identical to that of exp{jq}.exp{jr} over
one period. Consequently, the terms of eq.(17) except
(MM*+LL*+ KK*) result to be zero. The expectation
with respect to random variables 8, V, #, V' should be
considerated. As a result, the parameters (xq,%0) have
no concern with our formulation. The expectation value
of cq.(17) with respect to the radom variables & and V
is described by

E[|E(w)’] (18)
= ,[l [S(w; 8, V)| [1=H (w)|* ps (8)pv (V )dbdV

+[[ |N1(w;9:V')]2 fH(w)|2pgf(8')pV:(V’)dﬁ'dV'

2

+ M) |H @)
The optimal solution of k(%, j, ) which minimizes the e
is obtained by the set of conditions de [ 8h(Z,7,k) =0
for all (¢,7,k). To simplify the normal equation de /

8h(i, 7,k) = 0, we introduce the following matrices A,
& and R.

fw(Pss + Pnﬂ)C—Ml,—Mg,—M;;C—M-;‘—Mg.—M.‘zdw

[5>3

fw (p.!.s + Pnn)c—M‘,—Mg.—M:gCMl|M23M3dw
fw(Pss + Pﬂﬂ)CM1‘M3.M:!C—Ml,—MQ|—M3dw

fw(PSS + Pﬂﬂ)CMannMuCML‘M:sMsdw
(19)

£ [ g(—My, - My, —M3)
g(_er_ME:_MB +1) Q(MlaME:ME) ]
(20)
RT g [ fw PSSC—MI,—Mz.—MJd‘u)
fw PBBC—Ml,—Mj.—M3+1dw Tt fw PSECM:[.Mz,Mgdw ]
(21}
Cijp = co8{wyt + wyj + wik) (22)

. where the symbol 7 represents transposition. P,
is given by eq.(7) and Py, is the power spectrum of
n(x,y,t), written by

Pan w) ,/; [_ |N1 wr @ V;)| (23)
per (8 )pv (V)d8'dV’ + |Np(w)[?

Then the impulse response h{i, j, k) can be obtained as
the solution of the next normal equation with this no-
tation.

A-G=R (24)
Ri, g, k), (G=j=k=0)

hii, g, k), (either of 4,j,k=0)
h(i, 3, k), (either of 1,4,k 0)
h(i,5,k), (55,6 #0)

gli, i, k) =

(25)
3 EXAMPLE

Let us consider a detection problem of a target
LTS which has constant value on a rectangular-shaped
region{2z, x 2y, [pixels]) contaminated by additive Gaus-
sian white noise (variance ©%) and unwanted another
target signal.

The target LTS is supposed to have 2-D object signal

w(z,y) ={ (1,

The power spectrum |[S{w;u,v}|? of input signal
s(x,y,t) can be obtained from eq.(6) as follows,

(e, y)ile| S 21, lyl <
otherwise (26)

|8 (w; m, v)° (27)

= |87z yy sinc{wezy )sine{wy, y1 )8 (ww, + vwy + wr)["z
Eq.(8) is used to calculate Py {w) , that is,

Pyy(w) = {8rm gy sinc(w, oy sine(wyyr )}

(==}
f/ S(nws + vwy + wy)p(u, vidude (28)

We set the probability density function pg(#) and
v (V) as follows:
(i} #: approximated Gaussian distribution on [#y —
T, gﬂ + ?T]

pa(0) =

1 _ 2
Zﬁﬁexp{—(j‘—-—fi[—]-)——} —m<d—Gi<T

202
(29)



(i) V: Gaussian distribution,

_ ! (V- Vo) i
pv(V) = —=cap {- RS /// Q’II
where 6, V) and 82, 02 are set to the mean and variance
of 6, V, respectively. All elements in the matrices A and
RT are obtained by the numerical integration. Then we
can obtain h(i, §, k) by solving eq.(24).

(a) CASE I (b) CASE II

Figure 4: Frequency response of FIR optimal filter

(2] T.J.Fowlow, L.T.Bruton, IEEE Int. Symp. on Cir-
cuits and Systems pp.1033-1036, 1988.

[3] T.J.Fowlow, L.T.Bruton, IEEE Trans. Circuits &
Syst., CAS-35, pp.595-599, May 1988.

a) Input image b) Output image
g
[4] K.Kondo, N.Hamada, ECCTD’95 European Conf.

on Circuits Theory and Design, vol.2, pp.557-560,
Aug., 1995.

Figure 3: Example 1

In the first case by setting 8g = 0 or n(rad),Vp =1
(pizel/ frame), B = 0.17(rad), o = 0.1(pizel/ frame),
z1 = 2(pizel),y1 = 1(pizel),T? = 0.25, a set of
input and output frame images is shown in Fig.3
(32nd frame). The obtained frequency response of
optimal filter (M = M, = M3 = 5,w; = 0) is shown
in Fig.4. Fig.5(b) shows the output in the second case
where a moving noise object is contained in the input.
Finally, in the same condition of the first example, the
shape of target object is changed to the ’L’-shaped as
shown in Fig.5(c) . The 32nd output frame image is
shown in Fig.5(d). (a) Input image II (b) Output image II

4 CONCLUSION

In this paper, we have proposed a design method of
optimal filter for extracting a target LTS. The impulse
response sequences of the optimal FIR filter is derived
in a general form by using power spectrum of LTS with
stochastically distributed direction and velocity. An op-
timal 3-D smoothing zero-phase FIR filter is obtained
by using the information of a set of desired LTS and
noise signals and their velocity vector distributions.

(c) Target object II (d) Output image III
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Figure 5: Example 2
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