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ABSTRACT

In this work, a new design method of M-channel linear-
phase paraunitary filter banks (LPPUFB) is proposed
for odd M with a cascade structure. The conventional
cascade structure has a problem that one of the filters is
restricted to be of length M. In the proposed method,
all filters are permitted to be of the same length as each
other and longer than M. The significance of our pro-
posed method is verified by showing some design exam-
ples.

1 INTRODUCTION

The linear-phase (LP) and paraunitary (PU) properties
of filter banks are particularly significant for subband
coding of images [1,2]. Thus, several linear-phase pa-
raunitary filter banks (LPPUFB) have been studied so
far [3-7]. In the article [3], a special case of such sys-
tems, which is known as the lapped orthogonal trans-
forms (LOT), was shown. Then, the more general sys-
tems were established [4,5]. For even M, such systems
have been well developed, especially with the cascade
structure [6,7]. Those structures enable us to design
LPPUFB in systematic ways. Furthermore, by using the
symmetric extension methods [8-11], efficient structures
of them for finite-duration sequences were constructed
[3,12]. Note that, however, LPPUFB for even M can
not be applied to construct M-band wavelets which have
more than one vanishing moment [13, Theorem 2.1]. On
the other hand, for odd M, there still remains the pos-
siblity to improve the limitations.

Soman et al. showed the existence of LPPUFB for
odd M, and provided the cascade structure in [5, Section
V]. However, a problem exists that one of the analysis
filters and one of the synthesis filters are restricted to
be of length M, while other filters are permitted to be
longer than M. In other words, all of the filters can not
to be of the same length as each other, except in a special
case. This limitation affects the achievable performance
such as coding gain [14] and stop-band attenuation.

Therefore, in order to solve this problem, we propose
a new product form of LPPUFB for odd M. The pro-
posed filter banks can be regarded as the odd M version
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Figure 1: M-channel maximally decimated filter banks
The box including | M and M denote the
down- and up-sampler with the factor M, re-
spectively.

of the generalized lapped orthogonal transforms (Gen-
LOT) [6,7] from the structure. In Sec.2, we review LP-
PUFB. In Sec.3, we provide overlap-save method (OLS)
based on LP orthonormal matrices, and propose a new
cascade structure of LPPUFB for odd M. In Sec.4,
we also propose the design procedure and, to verify the
significance of our proposed method, show some design
examples.

2 REVIEW OF LPPUFB

As a preliminary, we review M-channel LPPUFB. All
through this work, the notations I'ps, Ins, and Jpy de-
note the M x M diagonal matrix which has +1 and —1
elements alternatively on the diagonal, identity matrix
and reversal matrix [1], Besides; O and o are the null
matrix and vector, respectively, and the superscript ‘1"
on a matrix or a vector represents the transposition.

Figure 1 shows a parallel structure of M-channel max-
imally decimated filter banks [1], where Hy(z) and Fj(2)
are the analysis and synthesis filters, respectively. When
the reconstructed output sequence Z(n) is identical to
the input z(n), except for the delay and scaling, the
analysis-synthesis system is called perfect reconstruction
(PR) filter banks. Let E(z) and R(z) denote the M x M
polyphase matrices of analysis and synthesis banks, re-
spectively [1]. If E(z) and R(z) satisfy the following
condition:

R(2)E(z) = ez "Ny (1)



for some integer N, then the system has PR property
[1]. In addition, if E(z) satisfies the following condition:

E(2)E(z) = Ly, (2)

then it is said to be paraunitary (PU), where E(z) is
the paraconjugation of E(z) [1]. The condition as in
Eq.(2) is sufficient to construct PR filter banks, since
the PR property as in Eq.(1) is guaranteed by choosing
the synthesis polyphase matrix as R(z) = cz_NE(z).
Then, let us consider LP property of filter banks. We
assume that the elements of the polyphase matrix E(z)
is real, causal and FIR of order N. On this assumption,
the corresponding analysis filters Hy(z) are also real,
causal and FIR, and the order results in K = (N +
1)M —1. If E(z) further satisfies the following property:

NI E(") Iy = E(2), (3)

then each analysis filter Hy(z) for even k is symmetric
and one for odd k is antisymmetric with the center of
symmetry K/2 [4,5].

In this work, we consider constructing valid LP-

PUFB’s for odd M, which satisfy both Eqs.(2) and (3).
3 PROPOSED LPPUFB FOR ODD M

In this section, we propose a new product form of
polyphase matrices satisfying both Eqs.(2) and (3) for
odd M. Our proposed product form provides a new
cascade structure of LPPUFB.

3.1 OLS with LP Orthonormal Matrices

For the latter discussion, we provide an FIR filtering
technique based on odd-size LP orthonormal matrices,
as done on the basis of even-size ones in the article [7].
The technique can be regarded as a modification of the
generalized overlap-save method [2], and has an impor-
tant role for constructing LPPUFB for odd M.

Let H(z) be an FIR filter and e(z) be the M x 1 vector
defined by e(z) = [Fo(2), E1(2), -, Eax—1(2)]¥, where
Ey(2) is the £-th type-T polyphase component of H(z)
with the decomposition factor M. In the followings, we
assume that the factor M is odd.

Firstly, we decompose e(z) into the symmetric vector
s(z) and antisymmetric vector a(z), as follows:

s(z) = w’ (4)

a(z) = M (5)

There is a relation e(z) = s(z) + a(z). Note that s(z)
and a(z) are uniquely determined from their own (M +
1)/2x 1 and (M —1)/2 x 1 bottom vectors, respectively.

Let s"(z) and a"(z) be those bottom vectors of s(z)
and a(z), respectively, and define transform coefficient
vectors gr(z) and go(z) of s*(z) and a"(z) by

gn(s) = STuws'(2), (6)
golz) = AJuia’(:), (7)

where S and A denote arbitrary (M + 1)/2 x (M +
1)/2 and (M —1)/2 x (M —1)/2 orthonormal matrices,
respectively. In terms of gr(z) and go(z), the vector
e(z) can be rewritten as follows:

' (2) = V2[gi(2) 85(x)] CIu, (8)

where C is the M x M LP orthonormal matrix provided
as follows:

' Ts o Iy o Jm
C=— [ ] of  v2 o . (9
\/5 0 A Jvoa o S By

Eq.(8) can be regarded as a special case of the general-
ized OLS in transform-domain filtering technique [2].

When the order of the polyphase component vector
e(z) is N, the order of H(z) results in K = (N +
1)M — 1. Note that if and only if H(z) is symmetric
with the center of symmetry K/2, that is, the case that
2 Nel (271 Iy = eT(2), then the following properties
are satisfied with vg = 1 and yo = —1:

ge(2) = 9wz Vge(zh), (10)
go(z) = 70z Ngo(z7h). (11)

In addition, if and only if H(z) is antisymmetric with
the center of symmetry K /2, that is, the case that
—z~Nel' (2713 = e’ (2), the above properties are sat-
isfied with yg = —1 and vo = 1.

3.2 New Product Form

By using OLS developed in the previous subsection,
we derive a new product form of LPPUFB for odd M.
Let e;(z) be the type-I polyphase component vector of
Hi(z), that is, the transposition of the k-th row vector
of E(z). Since eg(z) can be represented as in Eq.(8),
E(z) has the following form:

E(z) = PTG(2)CIy, (12)

where G(z) is the M x M matrix which consists of the
transform coefficient vectors obtained from ex(z) as in
Egs.(6) and (7), and P denotes the M x M matrix which
permutes the even rows into the (M +1)/2 top rows and
the odd rows into the (M — 1)/2 bottom rows.

Then, we consider constructing G(z) under the PU
constraint as in Eq.(2) and LP constraint as in Eq.(3).
Note that if and only if E(z) is PU, G(z) is PU since
all of P, Jyy and C are PU. For convenience of the
further discussion, we define the M x M matrix F(z) by
F(z) = TBG(z) where

T Tas O )

= | 0 Ju | (13)
1 | BV o | BV

B = —| of v2 of (14)
\/5 | BV o S By
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Figure 2: The proposed cascade structure of M-channel LPPU analysis filter bank for odd M.

It can be verified that if and only if F(z) is PU, then
so is G(z). As a result, the PU property of F(z) implies
that of E(z). In addition, the LP property of E(z) as in
Eq.(3) can be represented in terms of F(z) as follows:

Targa O
0O —Tu

NI RGETY =F(z). (15)

The condition as in Eq.(15) is proofed from the fact that
the transform coefficient vectors included in G(z) satisfy
Egs.(10) and Eq.(11) with 45 = 1 and y0 = —1 for top
(M 4+ 1)/2 row vectors, and with yg = —1 and vo =1
for bottom (M — 1)/2 row vectors.

Let Fp,(2) be the matrix of order m which satisfies
both of PU property as in Eq.(2) and the condition as
in Eq.(15), and let

. Wg O
Rr, = [ o UEZ] (16)
Woz o O
Ro, = of 1 of (17)
O o Uoz

where Wy is an (M +1)/2 x (M + 1)/2 orthonormal
matrix, and all of W, Ug, and U, are (M —1)/2 x
(M —1)/2 orthonormal matrices.

Then, we can construct F,2(z), which also satisfies
Egs.(2) and (15), from F,, as follows:

Frny2(2) = Kgmi2Ap(2)Komy2 Ao (2)Fm(z), (18)
where KE,Z = TBREyzBT, KO,Z = TBROIBT, and

Targa O

o= Lol | 19
Taes o)

Ao (Z) - 6 2_11M+1 (20)

As a result, by constructing E(z) with the follow-
ing product form, we can obtain LPPUFB described by
Egs.(2) and (3) for odd M and even N, where N is the
order of E(z).

E(Z) = PTRELQE(Z)ROLQ0(2)~"
- Re1Qe(#)R01Qo(2)ReoCIar,  (21)

where Qg(z) = BAg(2)B, Qo(z) = BAo(z)B, and
L =N/2. When N = 0, E(z) = PTRgoCJ .

Eq.(21) provides us the cascade structure of LPPUFB
for odd M and even N as shown in Fig.2. This system
consists of (M + 1)/2 symmetric and (M — 1)/2 anti-
symmetric filters of odd length. Note that the coun-
terpart synthesis bank holding perfect reconstruction is
simply obtained because of the PU property [1].

It can be verified that the product form as in Eq.(21)
covers larger class of LPPUFB than that provided in
the article [5]. The conventional product form can be
viewed as the special case that the (M +1)/2, (M +2)/2-
th elements of the matrices Wgg for £ =0,1,--- L —1
are imposed to be 1. From the orthonormality, it implies
that (M +1)/2-th row and column of each Wg, consists
of zeros except for the (M +1)/2, (M +1)/2-th element.

4 Design Procedure

By controlling orthonormal matrices Wgy, Wg,, Ugg
and Uge in the structure as shown in Fig.2, we can
design LPPUFB for odd M, where N is even. Since
Wy can be characterized in terms of (M + 1)(M —
1)/8 plane rotations and others can be done in terms of
M (M —2)/8 ones [1], it is allowed to design such systems
by an unconstrained optimization process to minimize
(or maximize) some object function. Both of the PU
and LP properties are guaranteed with this approach
since these constraints are structurally imposed.

4.1

For the optimization process, we consider the recur-
sive initialization approach to avoid insignificant local-
minimum solutions. Suppose that Ey(z) be a matrix of
order N provided as in Eq.(21). Tt can be verified that
there exists the following relation:

The Recursive Initialization Approach

En(z) = 27 'En_2(2), (22)

when
R R Tup O 23
EL = oL = o S (23)

where L = N/2. Eq.(22) implies that Ex(z) is identical
to Exy_2(z) but with the delay. Thus, when En_a(2)
has good performance, for example high coding gain,
En(z) also does. From this fact, we can design a signif-
icant odd channel LPPUFB by the following procedure:
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(a) Filters designed for maximum coding gain
Gre for an AR(1) signal with p = 0.95.
Gre = 8.95dB.
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Filters designed for maximum stop-band at-
tenuation Ag, where the transition width of
each filter is assumed to be half of the pass-
band one. Ag = 26.5dB.

Figure 3: Design examples: amplitude responses of 5
analysis filters, where M = 5, N = 6 and the
length of each filter is 35.

Step 1: Start with proper LPPUFB Eg(z), for example
the M-point type-I DCT [15], and optimize it.

Step 2: Initialize the two higher order system by adding
the sections according to Eqs.(21) and (23).

Step 3: Optimize the system, and go to Step 2 until
the order reaches to V.

4.2 Design Examples

To verify the significance of our proposed method, we
provide two design examples in Fig.3, where M = 5,
N = 6 and the matrix C in Eq.(21) is chosen to be the
M-point type-1 DCT, that is, S and A are chosen to be
(M +1)/2-point type-I DCT and (M —1)/2-point type-
IIT DCT, respectively [15]. In Fig.3, (a) and (b) show
the amplitude responses of analysis filters designed for
maximum coding gain Grc [14], and those for maximum
stop-band attenuation Ag, respectively. Each analysis
filter has M (N + 1) = 35 tap length. These exam-
ples are obtained using the routines *fminu’ for (a) and
‘minimax’ for (b) provided by MATLAB optimization
toolbox [16]. When one of the filters is restricted to
be of length M as shown in [5], the results show worse
performance than the examples presented here.

5 CONCLUSION

In this work, we proposed a new cascade structure of M-
channel LPPUFB for odd M, which covers larger class
than the conventional one, and provided the recursive
initialization design method. We verified the signifi-
cance of our proposed method by showing two design
examples. As future works, it remains to construct M-
band LP orthonormal wavelets which have more than
one vanishing moment using our proposed filter banks.
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