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ABSTRACT

For FIR filters, limit functions generated in iterated ra-
tional schemes are not Invariant under shift operations,
unlike what happens in the dyadic case: this feature pre-
vents an analysis iterated ratioval filter bank (ATRFB)
to behave exactly as a discrete wavelet transform, even
though an adequate choice of the generating filter makes
il possible to minimize its consequences. This paper in-
dicates how to compute the error between an “average”
shifted function and these lirmit functions, an open prob-
lern until now. Also connections are pointed out between
this shift error and the selectivity of the AIRFB.

1 INTRODUCTION

AIRFB have been introduced [1] in order to provide a
finer “wavelet-like” frequency decomposition than what
is available with octave band analysis [2]. The interest
of requiring a grealer speciral accuracy arises from e.g.
audio coding: it is known that, for frequencies higher
than 500} Hz, the auditory systems performs a {roughly)
third-of-octave analysis. The generalization from the
dyadic case is rather straightforward and is done by
the substitution of the classical “filter—downsampler”
branch by the following one
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Figure 1: rational branch

where ¢ > p. This allows sampling by the fractional
factor g/p. On the synthesis side of course, the same
kind of branch is uscd: instcad, the condition ¢ < p
applies.

It has first been claimed that, the iteration of a ra-
tional oversampling branch with FIR filter G could not
converge to a limit function [1], as it would otherwise
be the case with a dyadic branch. However, we have
shown [3] thal the siluation is slightly more compli-
cated, and that, in fact, there exists limit functions:
unlike the dyadic limit functions, these new functicns
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are not shift invariant - -which allowed to say that the
dyadic schemes converge to one [unclion (), whereas
the correct result is that they converge Lo inleger shified
versions {ip(t — n)}, .z of one function . This differ-
ence is indeed the subject of the present paper.

We shall first remind some results, taken mainly
from [3], about the limit functions. Then we shall sct
two different measures for the shift, error, and show that
one of them - the L? definilion— is always accessible
through an exact computation, and thal upper bounds
exist for the other one  the L™ one-- . Some examples
will follow, showing how to choose a filter (¢ such that
its shift error be minimized. Finally, it is shown thatl the
L? shift error has an unexpected practical interpretation
in the analysis filler bank as a selectivity parameter.

All these results form part of a PhD thesis held re-
cently about iterated rational filter banks [4] in which
different issues have been addressed, ranging from ihe
description of the limit functions (regularity [5], shift
error,. . . ), the properties of a perfect reconstruction ra-
tional filter bank {(polyphase matrix, statistics, filter de-
sign [6],...) to a practical application (audio coding {7]).

2 ITERATED RATIONAL SCHEMES

2.1 Limit functions and time-scale transtorm

When an oversampled rational branch such as in figure 1
18 iterated j times, the impulse response of the system

—assuming a dirac impulse at tune ¢ = » tends to

behave as {{pn (f‘%k) }k 7 when j tends to infinity.
The conditions for this gonvergence to hold are given
in [3], and from now we shall consider that the consid-
ered schemes converge strongly. The essential difference
with the dyadic case 1s thus the fact that the index n
cannot be substracted from the variable. Otherwise ihe
functions verify a two-scale equation [3]

o)=L ore e () (1)

an extension of the two-scale difference equation well
known in the dyadic case [8]. This makes it straight-
forward to generalize the multiresolution theory [2.9] to



this case, the multiresolution spaces V), being generated
no more by integer shifted “father” functions but by the
functions ,: the inclusion property of the V), 1s pre-
served. We could say that the corresponding analysis,
still preserving the scale invariance, is the consequence
of the use of a measuring device whose characteristics
change with time,

As a consequence of the existence of support bounded
limit functions, the outputs of an AIRFB can be rewrit-
ten as samples of a time-scale transform, with p/q as
scale factor [3]. If the shift crror were cancelled, then
this transform would be a wavelet transform. Finally,
minimizing the shift error implies that the AIRFB be-
haves “almost™ as a wavelet transform, which is a strong
motivation for the study of this error (this is not the only
reason, as we shall see in section 4)

2.2  An average function

Even though the “pscudo-wavelets” have different
shapes, there is a limit to those variations and in fact,
they look like, more or less, to an “average function”
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which has special scaling properties, derived from a two-
scale difference equationr. This scaling equation can be
simply expressed in the Fourier space by

o) = 56 (475 5 (40) )

which shows that the spectrum of this average function
can be computed through an infinite product.

3 COMPUTATION OF THE SHIFT ERROR

We shall evaluate the lack of shift invariance of the limit
functions in two different ways, through the L™ mea-
sure £

€ = sup |ga(t) — p(t — )| (4)

and through the L? measure g
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where |||z is the natural L? norm of square integrable
functions,

3.1 Exact computations

It turns out that the L? shift error can efways be exactly
computed, whereas this 1s seldom the case for the L™
one.

3.1.1 The L7 case

Let us consider the symetrized filter T'(z) =
G(z)G(z7"). The associated iterated schemes induce
limit funetions ®,{t) and an average function ®(t).
Then it can be shown that

7 = B4(0) — &(0) (6)
This expression is easily computed

¢ &,(0} is obtained through the resolution of a linear
systern (thanks to the two-scale equation (1)), but
of course, one can simply iterate the schemes 1o find
this value

¢ $(0) which is also the L* norm of () is obtained
by considering the Fourier series expansion of @(t).
The final result is

0= LT (2

where A denotes the size of the support of ().
The different elements of this sum are compnted
through the infinite product meant by {3}, while the
number of terms to be taken into account depends
on the convergence rate of the sum, and on the
selectivity of . Indeed, if we truncate this sum,
the result given by (6} will be an upper bound.

2

(7)

Apart from the fact that it allows exacl computations,
this expression shows that the square L? error associated
ta G(z) is the L™ error associated to G(z)(G(z™").

3.1.2 the L™ case

The preceding computation gives us a clue to oblain £ in
some restrictive cases. Assume that G(z) can be written
under the form 2 P(z}P(z~') and that p— g = 1, then
we have the following exact value for the L°° shifl error

€= @_n(0) — o(N) (8)

in which, as for #, the different ingredients are casy 10
obtain. We Lhus see here, that the cxpression defin-
ing (4) reduces to the computation of the shifi. error ai
time { = 0 and for the limit function index n = —N.

3.2 Upper bounds

In some cases, it might be necessary to have aceess only
to g, even if 5 gives valuable informations. In that case,
and if G(z) hasn’t the special form given above, it is
necessary to find upper bounds for this error. Hislori-
cally, these bounds have been computed [5] before the
exact results given in the preceding subsection. Their
interest remains in the fact that they provide a better
understanding of the influence of the regularity on the
shift error: as a matter of fact, it had been  wrongly—
conjectured that the higher the regularity, the lower the
shifl error.



The idea underlying the computation of ihe upper
bounds, is that ¢ should not be very different from the
error generated in (1) after the replacement of ¢, () by
¢(t —n). That is to say, if we define

p(t —n) ngq ﬂpzp( t—n)

then £” might be a good approximation of . Notice that
the quantity £% is easy to compute, either by Fourier
translorin since

e’ < g-1 r{flax /|<p )} ‘G _z”{L)‘ dv
g

e’ =sup |p
n,t

(it is irmportant to notice that the “max” does not in-
clude the value £ = 0) or in the time domain, since it is
suflicient to consider that the index »n runs only over ¢
consecutive values.

The obtained upper bounds are rather complicated
since il is necessary to define a certain number of dif-
ferent. parameters and this would be too long for this
article. However 1t 1s enough to remember that we can
reach formulze of the form

< +p (10)
where p depends, in a complex manner on the regular-
ity and the support of the limit functions. The only
thing that is worth mentioning is that p decreases as
the regularity increases.

4 LINKS SELECTIVITY/SHIFT ERROR

We shall define the selectivity o{vp) of an ATRFB as
a function of the frequency vy it is the square root
of the upper limit value (when the number of itera-
tions inerease} of the energy in the attenuation band
relative to the energy in the passband, for the low-
pass branch. After j iterations, the low-pass branch
is constituted of an up-sampler ¢ a filter G;(z) =

G{z""G(z9 7). G(z¥") and a down-sampler p’.
So by definition
1/2 .,
Gy (e= 2" dv
o*(vo) = limsup —5- (11)

e /2;:3 |(}j(e_2"”)|2 dv
a

The important following result tmakes the link be-
tween this function o(vy) and some properties of the
limit. functions

2 - 2
i+ ] p()}? dv
. lv]> g

o (vg) = ;
p(v)f° dv
flulﬁg ()

(12)

L2 shitt @rrar

In particular, we can derive the following lower hound
for the selectivity

7
a(vg) > ——
llll2

(13)
which shows that the L? shift error can be re-interpreted
as a minimal selectivity for the ilerated schemes (in gen-
eral ||¢||z & 1, especially if we are interested in orthonor-
mal AIRFB).

If we remember the Fourier expression (9) of 0, we
can understand that there is no surprise in such a link
between shift error and selectivity: il we assune @ to
be in L! and G{e~%™) to be very selective wilhin the
frequency interval [_P+<I p+q] then the value of £? gels
very small, which indicates that ¢ 1tsell can hecome very
small too. The advantage of the result given in (12) 13
that this link is quantitative.

The fact that selectivity plus some amount of regular-
ity tends to minimize the shift error makes it easier to
understand why 1t was first claimed that regularity was
a direct factor influencing this parameter: as a matter of
fact, the regularity factor ”:__1' acts as a low-pass [iller
which thus tends to ditninish the frequency support of
the filter. But regularity is a much more complex thing
than simply low-pass filtering, which explains why it is
possible o find counter examples to the conjecture pro-
posed in [3].

5 EXAMPLES

We give here some exaraples, all based on the exact com-
putation of  and which show how the shift error behaves
when some parameters vary.

5.1 Regularity

regqularity ordar s

Figure 2: 7 as a function of s



L= shift arrar

We shall consider the following generating filters
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oe=3 (=) ()

for s = 1...9 and with p/¢ = 3/2. I we denote by ¢}
the limit functions generated by G*, it 15 known that
Op? = i1 — t,o;'l;ll Thanks to this differentiation rela-
tion, the regularity order of the functions }, is exactly
of the form rg + s where rg + 1 18 the regularity order
of the set of functions .. The L? shift crror for dif-
ferent values of s is plotted in figure 2. As we can see
in this example, the jucrease in regularity corresponds
to an exponential decrease in 7 for a wide range of s.
However, for the most regular functions, the shift error
increases again, pointing out thal the link regularity /5
is not direct.

5.2 attenuation

We are interested here in the influence of the attenuation
on the shift error. For this, we shall use orthonormal fil-
ters obtained from [6]. We are still in the 3/2 case and
consider fillers of length 21 minimizing (or trying to...)
an L? attenuation for various values of the beginning of
the attenuation band. The results are plotted in figure 3
As we can see, the attenuation alone cannot account for
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Figure 3: 7 as a function of the attenuation

the decrease of the shift error: there is a subtle tradeoff
hetween the width of the transition band (directly in-
creasing here with the attenuation) and the attenuation,
for which the shift error 1s miniruzed.

6 CONCLUSION

In this paper, we have shown the interest of the so-
called “shift error” in iterated rational schemes from the
AIRFB as well as from the multiresolution —i.e. the
limil functions— point of view. We have been able to

give exact values for one of the possible measures of
this lack of shift invariance, the L? shilt error. For the
L* shift error, we have only sketched the results given
in [4] due to their formal complexity: The author is
presently preparing a journal paper fully exposing these
resuits [L0].
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