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ABSTRACT The aim of this paper is to present an algorithm
Jor the coefficients of a weighted Lagrangian interpolating FIR
Jilter. The proposed filter Is effective in the reduction of amplitude
response sidelobes responsible for aliasing. The novelty of the
proposed L-th band interpolating filter lies in thar it allows for a
simultaneous L-fold interpolation and fractional sample delaying
of an input signal. The filter can be recommended for on-line
resampiing in  variable delay situations especially when
implemented in the so-called modified Farrow siructure.

1. STATE QF THE ART

Digital interpolation filtering is a topic that arises great interest
in digital signal processing literature. This is because there are
many situations, e.g. in timing recovery for high speed data
communications, adaptive delay tracking, delay control systems,
precision beamforming and beamsteering etc., where there is a
need for resampling an original discrete-time signal from one to
another sample rate.

In those applications, where resampling must be realized
on-line, one secks for simple solutions convenient in practical
hardware, offering rapid redesign. Then the techniques with
closed-form design formulas for the filter coefficients are
favoured. Such closed-form solutions have been hitherto derived
for windowing, frequency sampling, least-square, Lagrangian
[1L[21,[8],9] and piecewise parabolic [3] FIR filter design
metheds. Among the above methods the Lagrangian and piecewise
parabolic interpolation filter types are known as unsurpassed from
the peint of view of the smailest approximation eror in the
vicinity of the centre frequency of the filter frequency response.
However, the main drawback of the Lagrangian and piecewise
parabolic Lth band filters used for interpolation by a factor of L, is
the presence of relatively high amplitude response sidelobes in the
so-called 4  bands [4] centred at the frequencies
o, ={2r+ /L, r=12,... As a result, these filters do not
guarantee that the tails of the input signal spectrum, as well as any
noise that normally exists in these bands, are not amplified so
much that they become excessive in the output signal.

In this paper we propoese a technique aimed at reducing the
sidelobe level of the Lagrangian Lth band filters.

2. DEFINITIONS

An Lth band filter is understood here as a lowpass filter whose
ideal frequency response is defined as
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where ¢ in Sa stands for a fractional delay introduced by the filter
and Sa is the symbol of sample interval. Consequently, the

frequency response of an ideal one-band filter of delay £, thus a
filter with L=1, is

H(e™)2exp(—jwe), laoj<r (2)

This filter is known under the name of fractional sample delay
(FSD) filter. Both ideal filters defined above are noncausal, thus
nonrealizable in real time in an on-line manner.

The impulse response of a causal M-point Lagrangian FIR FSD
filter is given by {cf. [21,[5])
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The delay = +(N-1¥2 Sa introduced by this filter is generally
noninteger. The frequency response H .y, {¢’?y of this filter fulfils
the following maximum flatness conditions

dE (@) do* =0, w=0, k=01..,N-1 (4)

where E,(e’*)2H (e/”)- H, y(e’®) is the complex frequency
response approximation error. The magnitude of this error is the
smallest for |4 < 0.5 [2],[5].

The impulse response fgypy[nl,n=01,. -1 of a
Lagrangian Lth band filter of length LN can be obtained by
polyphase composition (the technique inverse to polyphase
decomposition [6]) of L Lagrangian FSD  subfilters:

hso,N [#], hq,N[n]‘ 'hSL—laN (7], n=0,L...N-1 with
g=¢&+1fL, I=0],..,L-1. The delay introduced by the ith
subfilter is £+{N-1)/2. If the polyphase composition is realized in
such a manner that the impulse response of the Lth band FIR filter
is related to the above impulse responses of its FSD  subfilters as
given by
Roynl+11= h‘L—l—-hN [~], )
{=01,.,L-1, n»=01..N-1
then the delay introduced by the Lth band filter i3
EL+({L-1}/2+{NL-1)/2 Sa.

3. NEW CONTRIBUTION

The idea of our weighted Lagrangian FIR filter is based on
using for the FSD filter {or subfilter} impulse response the
following linear combination of the impulse responses of a pair of

Lagrangian FIR FSDs of length & each but of delays differing by
one Sa

{(1- A0l n=0
h:,":,)ﬂ [ﬂ]g (1-ghylnl+eh,_ yin-1}, =n=1,..,N-1 {6)
eh  yIN-1, n=N
The transfer function of this filter is
H® (D =(-0H g2 +ez ' H, 4 (2) {7)



where /1, ,{z) and H_, y(z) stand for the transfer functions of

the filters (k, y{n}}§ " and {h,_, y[n]lg " respectively. We have

shown that the frequency response HE_:L&H“’} of the weighted

Lagrangian FIR FSD filter (6) fulfils the following maximum
tlatness conditions

d'ELD (Y dot =0, @=0, k=01..N-1
where all the derivatives of the complex frequency response
approximation error

Eoin (&)= HAe™) = H ()
up to the N-1 derivative for this A+1-point FIR filter are of zero
value. :
Each of the component Lagrangian filters produce an estimate

of the desired output sample x{n— z')g x(!)L:(n_ or shifted in time

relative to the current input signal sample x[n]gx(t)L where

=uT"
rig+(N— 1)/2 Sa as in Sect.2. The target estimate i(n- ©) of
x(n— 1) 15 obtained by weighting these two estimates by 1-£ and
& respectively.

In a number of applications the problem is to synthesize a very
shart interpolating FIR filter offering rapid redesign, suitable for
realization of irrational resampling rates. The need for such a filter
is presently found especially in digital speech and audio
processing. The examples of sample rates to be mutually converted
are: telephone PCM - 8000 Sa/s, CD - 44100 Sa/s, DAT - 48000
Sa’s, DCC/DAB/MAR - 32000 Sa’s. Other possible applications
are listed in Sect.]. Consequentiy, we shall confine now to the
third order weighted Lagrangian FIR FSD filter which will be
exploited further as the basic building block for a weighted
Lagrangian Lth band filter. The order N=3 ¢an be considered as the
smallest for reasonable accuracy of approximation.

The third order weighted Lagrangian FSD filter is composed of
the following pair of Lagrangian FSD subfilters of length A&=3,
fractional delay & and total delay 7

Hy3(2) = hos[01+ by {1127 +hg5[2027 (®)
and
H_a(2)=h,_ 5001+ hs_u[l]z_l + ks-].3[2]2_2 (%)
where
hool0l=(e=1)/2, hylll=1-&, h_,[2]=s(s+1)/2 (10)
and
by a01= (6= 10e=~2)/ 2, k5[] = 82— &) h,y 5[2] = &= 1)/ 2

(3]
The transfer function of a weighted Lagrangian FSD filter of
length N+1=4, fractional delay & and total delay ¢ as above is
HEMzy= 0101+ hCP1E " + A 2072 + REP13 (12)
where, according to (6),

R0 =182 /2, KM= 2-5¢ +38")/2,

K20 = s+ 46-364)72, KN31=(e-1)/2
By substituting (13) to {12) and rearranging the resulting

polynomial in fractional delay £ (instead of z7') we obtain the
following representation of weighted Lagrangian filter transfer
function

HH(2) = Co(2)+ C(2)e + Cy(2)€” + Co{n)e (14
where C,{z),
by
Col =2 Q) =—1/2427 72, G =1-5"112+2:7 =273,

n=10,1,2,3 are polynomials in P given

Ci(ny=-1/2+32712-327212+27 /2 (1%
This representation leads direcily to the modified Farrow structure
[7].{8] of our third-order weighted Lagrangian FSD filter, shown
in Fig.1. The transfer functions C,(z) sharing the unit delays are
fixed for given order 5=3 and in Fig.1 the only parameter to be
changed is & . The modification of the original Farrow struciure is
based here on the Vilimgki strategy [7] thai the varying parameter
is & rather than z (generally noninteger). This makes the Farrow
structure especially efficient for applications where the fractional
delay £ is changed often, even every sample interval.
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Fig.1. The modified Farrow structure for a third order {¥=3)
weighted Lagrange interpolator

it is worth noting that for fractional £¢# 0 an Lth band filter
composed of weighted Lagrangian FSD subfilters acts as un L-fold
interpolator and resampler simultaneously, while for £=0 it
resolves to the standard linear-phase L-fold interpolator [4],[6]
which fulfils the Nyquist condition [6] for leaving the interpolation
nodes, thus the input signal samples in the interpelator autput
signal, unchanged.

4. PERFORMANCE

Typical curves for the assessment of the performance of our
Lth band weighted Lagrangian FIR filter composed of third order
weighted Lagrangian FSD subfilters are presented in Fig2. It
shows the amplitude response and the net group delay response of
the weighted Lagrangian (dotted line), Lagrangian and piccewise
parabolic Lth band filters (solid lines) with the parameters:
L=3N+1=4,£=025 Sa For the sake of comparison the net
group delay responses of the Lagrangian and piecewise parabolic
filters are in Fig.l turned vertically around £. The location of
transfer function zeros for these three filters is depicted in Fig.3
with o-mark, x-mark and +-mark, respectively. The coefficients of
the filters are:

(B DG |, =1-11,-175,-243,189,

5=0725
1545,2997,339%,2331,783,-121,-245,-81} /10368



for a weighted Lagrangian filter,
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Fig.2. The amplitude responses and the net group delay responses
of weighted Lagrangian (dotted ling), Lagrangian and piecewise
parabolic (solid lines) Lth band filters with the parameters:
L=3,N+1=4,£=0.25 5a (the inmost curves are for the
piecewise parabolic filter)
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Fig.3. The location of transfer function zeros for weighted
Lagrangian (o-mark), Lagrangian (x-mark) and piecewise
parabolic (+-mark} Lth band FIR filter with the parameters as in
Fig.1 (zeros far from the unit circle are not shown here)

{N+13L-1

W _osenalnlly =1{-143,-595,-567,897,

|N=L=3
=025

4845,8505,9867,6783,2835,-253,-665,-405} / 31104

for a standard Lagrangian filter [2,5] of the same total delay and
length and
{-11,-35,-27,35,155,243,275,203,99,-11,-35,-27}/ §64

for a piecewise parabolic filter. The coefficients of the piecewise
parabolic filter have been computed using the two-parameter
algorithm given in [3] with the parameters: u -the fractional delay
and a-the weight Here we have used g=¢&. The second
parameter has been set to a=05 for simple hardware
implementation (see p. 1004 and Appendix in [3]).
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Fig4, The total amplitude responses in dB, the amplilude
responses enhanced in the passband and the net group dclay
responses in the passband of weighted Lagrangian (solid line) and
Lagrangian (dofted line) Lth band filters with the parameters:
L =10, N =3 and fractional delay 0.25 Sa

Figs.4 and 5 show the effect of increasing the interpolation factor £,
(from L=3 as in Fig.2 to L=10) on the amplitude and group delay
responses of weighted Lagrangian Lth band filter (solid line) in
comparison with the Lagrangian filter (dotted ling in Fig.4) and the
piecewise parabolic filter (dotted line in Fig.5), with the remaining
parameters: the length of the subfilters and the fractional delay
unchanged. We have shown the total amplitude responses in dB



for f =@/ 2xe<—0.5,0.5)1/Sa and the ampiitude and the group
delay responses of these filters enhanced in the passband, Only the
fractional part of the group delay responses is shown,
approximating the desired constant fixed here to 0.25 Sa. The
ripples of the group delay response exhibited by the weighted
Lagrangian and piecewise parabolic filters in he passband are in
fact very small and do not exceed 1% of the desired constant value.
These examples, as well as other experiments with a wide set
of the parameters: £, N and &, show that:
» The magnitude of weighted Lagrangian filter amplitude
response sidelobes is significantly reduced (from approximately
-10 dB to more than -30 dB depending mainly on N and L) as
compared with its Lagrangian or piecewise parabolic counterparts.
* Weighting the Lagrangian Lth band filter coefficients as in
Sect.3, locates the transfer function zeros, responsible for the
sidelobe reduction, quite close to the unit circle, at the angles
corresponding to angular frequencies very close to the frequencies
@, from Sect.1.
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Fig.5. The total amplitude responses in dB, the amplitude
responses enhanced in the passband and the net group delay
responses in the passband of weighted Lagrangian (solid line) and
piccewise parabolic (dotted line} Lth band filters with the
parameters: L =10, ¥ =3 and fractional delay 0.25 Sa

« The amplitude response and the group delay response
bandwidths with good approximation are slightly wider for the
weighted Lagrangian than for a nonweighted Lagrangian filter. For
a piecewise parabolic fiiter both these bandwidths are the smallest.

» The coefficients of all three filter types under consideration can
be realized exactly in fixed-point arithmetic with simplest
hardware for piecewise parabolic filter and with hardware which is
simpler for a weighted Lagrangian than for a nonweighted
Lagrangian interpolator.

5. CONCLUSIONS

The original contribution of this paper is an algorithm for the
coefficients of a weighted Lagrangian interpolating FIR filter. It is
shown that this algorithm can be implemented in a modified
Farrow structure well suited to the applications where the
coefficients are updated often, even every sample interval. The
performance of this filter is improved as compared with the
nonweighted Lagrangian filter and piecewise parabolic filter. The
proposed solution is effective in the reduction of amplitude
response sidelobes responsible for aliasing. The novelty ol the
propoesed L-th band interpeolating filter lies in that it allows for a
simultaneous L-fold interpolation and fractional sampie delaying
of an input signal. The filter can be recommended for on-line
resampling and delay compensation in variable delay situations,
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