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ABSTRACT

Linear constraints in adaptive beamformer are
often used to control its transfer function. In this
paper wc utilized these constraints (o reduce
computational cost of the adaptive algorithm. For
this aim, two types of constraints were proposed, The
first one is that all zeros of the transfer function
appear as conjugate-complex pairs lying on the unit
circle. The second one is that some zeros have
prescribed positions and the adaptation is realized by
the rest of zeros. Developed constraints are applied to
the generalized sidelobc canceller and wsed to
blocking matrix design. Experiments proved that
degradation in performance of the partially adaptive
algorithm is a litde compared (o the full adaptive
algorithm,

1. INTRODUCTION

To obtain a good interference cancellation, array
must be composed of large number of sensors. In full
adaptive algorithm, without additional transversal
filters in sensors’ lines, degree of the freedom is M-I,
where & is number of sensors. The greal number of
the sensors rises up the computational complexity of
the algorithm. It can be problem in real-time
implementation of the algorithm. To overcome this
problem, somc authors propose partially adaptive
algorithm [1], [2], [3] in which especially constraints
arc used to reduce degree of the freedom and hence
comprtational complexity with minimurm
degradation of the performance.

In this paper we propose two types of constraints.
The first set of constraints is that all spatial zeros
must lie on the unit circle in the complex plane. This
condition is motivated by the fact that the zeros on
the unit circle produce maximal sidelobes
attenuation. This set of constraints reduces the initial

degree of freedom two times without significant
degradation of the performance.

The second set of constraints is based on a priory
knowledge of some directions of arrival and fixing
some zeros of the transfer function. If all directions
have the same probability, or if there is no a priory
knowledge about them, a number of zcros may be
equidistantly placed on the unit circle. The error
between true directions and our guess can be
corrected by the adaptive positioning of remaining
zeros. This can be done by factorizing characteristic
polynomial on two polynomials. The first one, with
prescribed zeros is nonadaptive, and the second one
is adaptive to the present interferences.

Applying generalized sidelobe canceller, the
designed constraints take place in the blocking
matrix and the optimal weightings can be estimated
by the ordinary unconstrained LS or LMS
algorithms. The blocking matrix design is also
presented in this paper.

2. PROBLEM FORMULATION

Frost’s adaptive beamformer [4] is displayed on
fig.1. Desired signal arrives from the direction
orthogonal to scnsors’ lines. Sensors’ data vector

X =[xgs..., xN_l,,]T is weighted by the vector
w=[w,,...,wy.]" and form output signal y vector
T_H H
ywlkX | wo=[wq,... Wyal {n

where columns of N by n+1 data matrix X represent
array data at times 0 to ». () denotes complex
conjugate transpose and (.)7 real transpose. Upper
case and lower case boldface symbols represent
matrices and vectors, respectively.
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Fig.1 Frost’s adai)livc beamformer.



For the plane wave with wavelength 2, arriving
from angle 6, spatial filtering characteristics of the
array <an be expressed as [5]

N-L o
W, = Zw"z—n’ 7= eJnkdsm(i?], k= i

, (2)
=0
where d is distance of the sensors. From the (2),
W(6 A) can be viewed as z-transform of array weights
on the unit circle,

The linearly constrained leasl  squares
beamforming problem is expressed as

miny"v  subjectto CTw=f (3)

“}

where C is ¥ by I dimensional constraint matrix,
and f is the L-dimcnsional response vector.

Tt is desirable to transform the constrained least
squarcs problem (3) to unconsirained form using the
method in [6] known as Generalized Sidelobe
Canceller (GSC). The GSC represemts a
decomposition of w into two components: a
nonadaptive beamformer wy satisfving C w=f and a
product of a signal blocking matrix C and an
unconstrained adaptive weight vector # . € is N by
N-L . rank N-L matrix salisfyving following equations

c'C=0 | 4

w=w, - C#w (5)
From (3}, it is evident that Chw = F is satisfied for
all .

3. NEW SETS OF CONSTRAINTS

The new set of constraints is bascd on the
following assumptions:

Al. Zeros of the spatial characteristics had to be as
deep as possible, 1.g. to lie on the unit circle.

A2. Spatial filtering characteristics of thc array
(6, A) had to be symmetric.

A3. As the number of sensors is N-:2n+2m+1, 2n
zcros have prescribed positions.

Corollary:

From the Al and A2 it follows that weighting
coefficients should be real and symmetric. This
produce {(s+m) hincar constraints. Finally, from the
assumption A3 it follows that polynome H(6 1) can
be factorized on two parts. The first one have
prescribed m conjugate-complex zero pairs and the
second one that depend upon the adaptation of the
algorithm.

The power of the polynome W(8A) is 2(n+m).
Let break #(8 A) on two factors

WO,M) = wotw,z M+ o+ Wapy 2 2=
=(1+az '+ +a, 2+ A+ 22
Bt Bz 4. A Bz ™t 4 2 T Bz ™) (6)

The first one with fixed coefficients a; is
determined by the prescribed positions of zeros. The
second one with coefficients /4 is adjustable by the
adaptive algorithm, Because of the assumptions (Al)
and (A2) both of the polynomes have symmetric
coefficients. From the {(6) we can wrile system of
linear equations

wo m— ljo

Wy = 91[30"'[31

wé&m = +‘1n-ll3m—1+0‘~nﬁm+an-1ﬁm—l+ @]
Waerm = O BotBy

Watpem) = 0

From the system (7) it can be created (2n+2m+1)
by (2n—m+1) constraint matrix c" with (2n+nt+1)
constraints {Appendix 1, rclation (AB))

In blocking matrix design we have freedom to
choose last i rows, to be independent, and the rest
ones to evaluatec by the constraint (4) as it is
explained in appendix A2. Weightings w; for the
conventional beamformer part, can be chosen with m
degree of freedom. This degree of freedom can be
spent for minimum least squares soluticn of the
weightings by the relation

wy = C(C"C)" f (8)
4, BLOCKING MATRIX DECOMPOSITION

As the columns of the blocking matrix C are
symmetric, it can be displayed in bfock matrix form

B, o 1
C=|b, |, TI=|: 1 ! )]
iB, 1 - 0

From the (9), C can be factorized on two matrix
1 0
e _ _ B,
C=QC;, , Q=|0-01|, C, = : (10)
10 Ps

The coeficients of the matrix Q are independent on
interference frequency, while the matrix C, is
frequency dependent. On the same manner we can
factorize weighting vector wy. It can be represented

by three elements wy=[w; s 1w | and then
expressed in the form
we=Q w,, w=lw, wsl" (11
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Fig.2 The partially adaptivé beamformer.

5. EXPERIMENTAL RESULTS

Computer simulations were done to prove validity
of proposed sets of constraints respectively to the
degradation of the performance. In all experiments
the signals were sampled with 10000Hz. The
broadband desired signal arrives from direction
orthogonal to sensors’ line. All algorithms worked in
time domain and the block processing mode.
"Experiments were done with following algorithms:

(» Full adaptive algorithm with 15 sensors, (14
degree of freedom).
i7) Partially adaptive algorithm with 15 sensors, 11
constraints and 4 degree of freedom. Polynome
with fixed zeros was.
Pi(z) =1 + 2.400943z"+ 3.3912852 2+ 3.801121z %+
+3.391285z7+ 2.400943z°+ 2
Blocking matrix was
1000 175 -832 —.150 315 —150 —.832 —175 00 0 1
0100 -588 .018 -.018-.824 —018 .018 —.588 00 10
0010 429 —015-998-.832 ~998 015 429 0100
0001 .401-411-.581-820 —581 —.411 4011000

C-=

Conventional beamformer weighting vector was

Wy =.1x[.566 773 770 .750 .652 .604 .649 .472
649 .604 .652 .750 770 773 .566)

@i Full adaptive algorithm with 5 sensors, (4 degree
of freedom) which has the same computational
complexity as partially adaptive algorithm #7).

In the first experiment algorithm (i/) was tested.
There were 12 narrowband interferences arriving
from directions of 23.0°, -23.0°, 42.3°, -42.3°, 67.1°,
67.1°,29.8°, -29.8°, 51.2°, -51.2°, 73.0°, -73.0°, with
central frequencies respectively 3025Hz, 3025Hz,
2802Hz, 2802Hz, 2816Hz, 2816Hz, 2800Hz,
2800Hz, 2800Hz, 2800Hz, 2800Hz, 2800Hz. The
result of the interference cancellation is displayed on
the fig.3. As it can be seen from the fig.3., the
interferences were strongly canceled.

In the next experiment interference was white
noise signal band limited from 800Hz to 2400Hz,
arriving from the angle of 45°. As the beamformer
works with fixed blocking matrix, and uses
weightings without frequency correction, its
performance is equivalent as there are lot of narrow
band interferences arriving from different angles.

Algorithms @), (i) and (i) were tested and their
performances were compared. The input and output
Signal Interference Ration (SIR) and Gain of the
tested algorithms are presented in the table 1. Time
diagrams are shown on fig.4. Algorithms (i) and (1)
gives approximately same results although algorithm
(#7) has lower computational cost. Algorithms (i) and
¢iiiy have the same computational coast but the
partially adaptive algorithm (algorithm (ii)) has much
better performances.
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Fig.3. a) Original desired signal, b) first sensor’s signal, c)

signal on the output.
Table 1
Algorit Input Output i
gorithm S]% SIR Gain
Full adapt. -132dB 16.78 dB 29.98 dB
15/14 (i)
Part. adapt. -13.2dB 16.57 db 29.77 dB
15/4 (i)
Full adapt. -13.2 dB -5.95 dB 7.25 dB
5/4 (i)

3416.00

Fig. 2. a) original signal, b) signal+interferences on the
sensor 1, ¢) Output of algorithm (#), d) Output of algorithm
(i), e) Output of algorithm (7).

6. CONCLUSION

In order to reduce computational cost of the
adaptive algorithm, we propose two new sets of
constraints. First one is that all zeros of the transfer
function appear as conjugate-complex pairs lying on
the unit circle. The second one is that some of the
zeros have fixed positions based of the a priory
knowledge of the interferences’ arriving angles. The



first set of constraints reduces computationally cost
approximately two times, while the second one
additionally reduces it depending on the number of
the fixed zeros. Designed blocking matrix can be
factorized on two matrixes from which first one is
frequency independent. This matrix operation can be
realized by analog clectronics components (fig.2).
Applying A/D conversien after matrix Q, the number
of analog signals that have to be digitized, can be
reduced two times. Experimental results show that
the performance of the proposed partially adaptive
algorithmm is approximately same as the full
adaptation algorithm.
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Appendix Al. Constraint matrix calculation
Let represent first n+m+1 cquations of the linear equation
system (7) in matrix form
w, A, O | b
= (Al

1 A2 bl

where Wy, W, by and by are column vectors T
wi=[wp ... Wy) W[ W= ... Wmin]
b=[f ... Bl b2=( B ... fhl"

Ayism+1 by m+1 matrix, and Az » by (n+m-+1) matrix of
form

1= @, ..o, x 1O
Ol a2

and Oy is m~ | by » Zero matnix. There is relation between
by and by
0 1

bz=1b 1 00 (A2)

-
Il

First m—1 equations from the system (Al) are linearly
independent and we can solve it by the vector by

bi=A; Wi (A3)

By the relations {Al), A2) and (A3) we can find
relationship between wy und w2

b I
w, = A{b:] = AZHA, ', (Ad)

From the (A4) we cun find first set of constraints
placed in the matrix €; dimension » by (2n+ 2m+1)

" {AEMA;H -L, ﬂl] (AS5)

where I, 15 unit matrix dimension » by n and 0 is zero
matrix dimension » by (n+m).
From the unit gain censtraint for the desired signal

Ew,. =1 (A6)

and symmetry of the weighting coefticients, the constraint
matrix Cj; takes a form

1

?

-1

-1 0 (A7)

=3
=

1
v
1

G=|g

1 0-1

Complete constraint matrix C is union of the matrixes
Cz and C;

C

= { ’} (A8)
Cl

Appendix A2. Blocking matrix determination

Constraint matrix C" can be partiticned on full rank
matrix Cr dimension 2r+m+ ] by 2r+m+1 and matrix Cp,
dimension 2r-mt 1 by m. Blocking matrix € can be also
partitioned en two matrixes €; and €, so that constraint
equation (4) can be expressed in form

e-fer 6] S-o
2

Submatrix (_Z‘; can be any matrix range of the m. Submatrix
C, can be expressed by the relation

- N —
C=-CrCL} (A10)



