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ABSTRACT

We propose a novel preprocessing scheme, referred to as vec-
tor peeling, as an alternate to the conventional spatial smooth-
ing for solving the multiple source location problem involving
coherent sources or a rank deficient source covariance matrix.
The essence of the technique is to preprocess the signal sub-
space eigenvectors rather than the covariance matrix as in
spatial smoothing. It is shown by analysis and computer
simulations that these two approaches are related, and that
vector peeling slightly outperforms spatial smoothing when
employed with the MUSIC-type DOA estimators. In certain
instances, vector peeling offers advantages in terms of com-
putational simplicity and flexibility. The latter is especially
true with eigenstructure DOA estimators in adaptive estima-
tion problems, i.e., when the signal subspace eigenvectors are
updated using fast adaptive algorithms.

1. INTRODUCTION

The majority of the popular eigenstructure direction of ar-
rival (DOA) estimation methods such as MUSIC [1], Min-
Norm [2], and others, are known to perform poorly when the
sources are coherent or highly correlated. Spatial smoothing
[3] has emerged as a viable technique to combat the problem
of source covariance matrix degeneracy in coherent multiple
source location. This technique has attracted considerable
attention in literature in the recent decade. It has a draw-
back in that it does not lend itself easily when employed with
eigenstructure DOA estimators. In spatial smoothing once
the subarray dimension is chosen, it is difficult to enlarge or
reduce subarray size as it involves recomputation of eigen-
vectors/eigenvalues. In order to provide such flexibility, it is
more logical to preprocess not the sample covariance matrix
but directly the signal subspace eigenvectors [2], [4]. We show
how this can be done by means of a process referred to as
vector peeling. We introduce this process and revisit the con-
ventional spatial smoothing technique. Then, it is shown that
spatial smoothing can be reformulated as a eigenvector peel-
ing process. It is demonstrated that these two techniques are
theoretically similar but computationally different and, there-
fore, represent the alternative solutions to coherent multiple
source location problem. After that, we develop vector peel-
ing algorithm for location of coherent sources. Though the
simplest forward—only peeling and smoothing algorithms are
considered, all results can be easily extended to the forward-
backward case. The computational loads of vector peeling
algorithm are compared with that of spatial smoothing tech-
nique and some possible computational advantages of vec-
tor peeling are established for signal subspace updating algo-
rithms. Finally, simulation results are given, demonstrating
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that vector peeling slightly outperforms spatial smoothing for
MUSIC-type estimators in coherent source scenarios.

2. VECTOR PEELING IN RELATION TO
SPATIAL SMOOTHING

Define vector peeling as a simple process of generating re-
duced length, overlapping vectors from a given vector as fol-
lows. Tf x = (z1,%2,...,7,)" is a given n x 1 vector, vector
peeling operator VP(-) produces the m x 1 vector:

 Bigmo1)’ (1)

where m < n, ()T denotes the transpose. Thus, the process
of vector peeling can produce ¥ = n — m + 1 different m x
1 vectors VP(x,i,m), ¢ = 1,2,...,n —m + 1 from the
underlying vector x.

Define the m x n» matrix I(; ;) to be a matrix that has
first ¢+ — 1 zero columns and last n — m — ¢ 4+ 1 zero columns,
and an m X m identity matrix I, in the middle:

VP(x,i,m) = (i, Tig1, ...

I(i,m) = [01,~~~,0i—1,Im,0i+m,~~~,0n] (2)

where 0; denotes Ith zero column. With this notation, (1)
can be rewritten as:

VP(X,i,m) = I(iym)X (3)

Let us now revisit the conventional spatial smoothing
technique and show how it is related to vector peeling.

Assuming that ¢ (¢ < n) narrowband plane wave sources
impinge on the equispaced linear array of n sensors from di-
rections 01, 6>,...,6, and that the additive noise is zero-mean
random process independent from sensor to sensor, the n x n
covariance matrix of array outputs can be written as [1], [2]:

R =ASA" +5°1, (4)

where
A =[a(f1),a(82),...,a(8,)]

is the n x ¢ direction matrix, a(8;) denotes the direction vec-
tor of 1th source, S is the ¢ x ¢ source covariance matrix, o>
denotes the noise variance, and ()H denotes the Hermitian
transpose. It is well known [3] that when some of the sources
are mutually coherent, the source covariance matrix becomes
singular and the eigenstructure algorithms of DOA estimation
are no longer applicable. The spatial smoothing preprocess-
ing scheme [3] restores the rank of source covariance matrix
by partitioning the array into k overlapped subarrays with
dimension m = n —k 4+ 1 (m > ¢) and by averaging the
subarray output covariance matrices. The m x m output co-
variance matrix R} of the ¢th subarray can be represented
as:

R =1, RI}; ) (5)



and the m x m spatially smoothed covariance matrix as:
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Write the eigendecomposition of the matrix (4) as

R = Z)\lululH (7)
=1

where A;, 1 =1,2,..., n are ordered (in a nonincreasing order)
eigenvalues of R, and u; is the eigenvector corresponding to
the Ith eigenvalue X;. Taking (3) and (7) into account, we
can rewrite (6) as

k n
.1 . :
R=o § E MVP(ug, 3, m)VP(uy, i, m)™ (8)

=1 I=1

Therefore, the spatial smoothing preprocessing can be refor-
mulated through the vector peeling process applied to the
eigenvectors of R. The signal subspace of the covariance ma-
trix R in a coherent case is rank deficient and consists of the
set of eigenvectors, corresponding to the nonzero eigenvalues
of the matrix ASA¥. In other words, if the rank of this ma-
trix is p (p < ¢), the signal subspace is given by the set of
eigenvectors {ui, Uz,...,up} corresponding to the p largest
eigenvalues of R. Thus, we have

r
R—o’I, = ASA" =) (A — o*)u” (9)

=1

From (3) and (9) it follows that after the spatial smoothing
preprocessing the n x n matrix ASAF is transformed to the
m X m matrix:

k P
ASAH = %ZZ(A1—02)VP(111,i,m)VP(uz,i, m)" (10)

=1 I=1

As in spatial smoothing, the deficient signal subspace of di-
mension p is restored by vector peeling process. The peeled
vectors are no longer the eigenvectors of the smoothed covari-
ance matrix. From (10) it follows that the relationship be-
tween the vector sets corresponding to signal subspaces before
and after spatial smoothing can be written as:

smoothing
{ul}l=1,2,...,p —

{VP(u;,i,m)} !
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Expression (11) represents the new way of restoring signal
subspace through vector peeling which is theoretically similar
but computationally different from spatial smoothing because
latter is applied to the covariance matrix and the former to its
eigenvectors. Since the dimension of signal subspace of the ex-
act smoothed covariance matrix cannot exceed ¢, a subset of
vectors in {VP(uy, 7, m)} may be linearly dependent if kp > g.
Furthermore, it follows from the equivalence in (8) that vector
peeling requires the same number of minimum array elements
to fully restore the dimension of the signal subspace as spatial
smoothing and vice versa. In the finite number of snapshots
(sample) case, (11) is also valid but vectors {VP(uy, 7, m)} are
linearly independent unless kp > m because of the noisy char-
acter of covariance matrix eigenvectors. Nevertheless, both
in the finite and infinite number of snapshots cases kp — ¢
vectors of the vector set {VP(uy, ¢, m)} are redundant. The

situation in the sample case is complicated by the necessity to
estimate the rank ¢ of signal subspace in order to determine
how much peeled vectors are redundant.

3. ALGORITHM DEVELOPMENT

In this section, we develop the coherent source location al-
gorithm using vector peeling process. After a general formu-
lation of the algorithm, we concretize each step taking into
account both computational and performance factors. Then,
we show that the computational load of our algorithm is less
than that of spatial smoothing in the case of adaptive algo-
rithms updating signal subspace dynamically [5].

Assume that the estimate § of the number of sources is
available and that & (k < p) eigenvectors 11, 0z, . . ., @1p, corre-
sponding to the largest eigenvalues of the array output sample
covariance matrix are updated by one of the eigendecompo-
sition algorithms [5]. The general form of the source location
vector peeling algorithm can be written as the following se-
quence of steps:

e Step 1: Find the set of peeled vectors {VP(iy,i,m)},

l=1,2,...,h, 2=1,2,...,k as a result of applying
the vector peeling process (1) to the vector set {f},
1=1,2,... h.

e Step 2: Choose ¢ independent vectors gi1,g2,...,84 fr-

om {VP(a;,:,m)}, 1=1,2,...;h, =12, ...k

e Step 3: Calculate the MUSIC-type of DOA estimate:

1 1
f(0) = af(0)Pya(f) m—af(9)Psa(d) 12

where the m x 1 vector
a(d) = (1,exp{—jwor},...,exp{—jwo(m — l)T})T

7 = (d/c)sinf, wg is the center frequency, d is the
interelement spacing, ¢ is the propagation speed,

Ps=G(G7G)7'GY, Py=1-P; (13)
is the m X m projection matrices onto the signal and
noise subspaces, respectively, and

G:[gl’g2a"wg(1]

is a m X ¢ matrix.

Let us now concretize the steps 2 and 3 of this algorithm.
Note that the vectors for constructing the projection matrix
n (13) should be chosen from the peeled eigenvectors that
correspond to the larger eigenvalues of the array output sam-
ple covariance matrix because they tend to be more stable [2].
If the total number of array sensors is large compared to the
number of sources, then only one eigenvector (corresponding
to the largest eigenvalue) may be enough for vector peeling
(i.e., choose h = 1). Of course, the appropriate choice of
m and k is necessary in this case. When an eigenvector 1 is
peeled, it is better to choose relatively well “separated” peeled
vectors, i.e., vectors VP(1, i1, m) and VP(i, iz, m) such that
|i1 — i2| is large.

The main question that appears when implementing the
algorithm is how to estimate the dimension of signal subspace.
Possible solution to this problem is to use one of the existing
coherent MDL criteria (see [6] and references therein). In this
case, the estimate of § can be updated in parallel with signal
subspace eigenvectors. Because of relatively high computa-
tional cost of the coherent MDL methods, it is convenient to



update number of sources less often (i.e., with much smaller
rate) than the eigenvectors. This means that employing the
coherent MDL method, one should take much larger time in-
tervals between neighboring updates of the number of sources
than between the neighboring updates of highest eigenvec-
tors. Such type of double-rate parallel updating of number of
sources and eigenvectors is well motivated for the situations
with moving sources, where continious (unceasing) changes
of eigenvectors occur always while abrupt changes of number
of sources occur from time to time only.

It is ideal from a computational point of view to take
the orthonormalized vectors from the output of any vector
orthonormalization procedure as the required vectors g1, g2,

., 8¢. In this case, the equation (13) for the projection
matrix is simplified to:

q
P Y sl (1)
=1

From these considerations, we can rewrite the algorithm
in a more concrete and computationally effective form. Let us
assume that only the first sample eigenvector 111 is calculated.
Then, the sequence of steps of vector peeling algorithm is as
follows:

o Step 1: Find the set of peeled vectors {VP(111,4,m)},

i=1,2,...,k using (1).

o Step 2: Apply one of the existing vector orthonormal-

ization procedures [7] to the ¢ vectors from this set. In-
volve in this procedure maximally “separated” peeled
vectors (i.e., maximize the difference in index i between
these vectors). On the output of this procedure, one
have the orthonormal basis g1, 8o, ..., g4 for signal sub-
space.

e Step 3: Calculate the MUSIC-type of DOA estimate
(12) using (14).

On the Step 2, a variety of stable and computationally ef-
ficient vector orthonormalization procedures with complexity
O(g*m) are available [7].

4. COMPARISON OF COMPUTATIONAL LOADS

Let us now compare the computational loads of our algorithm
in terms of complex flops' with that of spatial smoothing
when applied to the DOA estimation problem using adap-
tive algorithms that update the signal subspace eigenvectors.
The computational complexity of the fastest adaptive algo-
rithms is O(hr) flops per updating step [5] where h is the
number of desired eigencomponents, and r is the eigenvec-
tor dimension. Here, we do not consider the computational
loads of the MUSIC function calculation because they are
the same for both algorithms. Therefore, spatial smooth-
ing based technique requires O(km2) flops for covariance ma-
trix smoothing and O(gm) flops for updating algorithm itself,
per step, respectively. Taking into account that km > ¢ al-
ways, we have that the complexity of spatial smoothing is
O(km?) = O((n — m)m?) per updating step. In turn, eigen-
vector peeling based technique requires O(n) flops for updat-
ing the highest eigenvector and O(g®m) flops for vector or-
thonormalization per updating step, respectively. Therefore
the total complexity of eigenvector peeling is O(g*m) + O(n)

1Each floating point operation (fop) is defined as either com-
plex addition or complex multiplication [7].

per step. Evidently, eigenvector peeling provides significant
computational improvement.

For example, for large array and relatively small num-
ber of sources, the number of subarrays is typically chosen
such that £ > ¢ in order to provide the suitable compromise
between the size of working aperture and the source decorre-
lation effect [8]. In this case, the computational complexity
of spatial smoothing may be dramatically higher than that
of vector peeling. For instance, for n = 100, m = 60, ¢ = 4,
we have that spatial smoothing requires ~ 10° flops, while
eigenvector peeling requires only ~ 10 flops.

In addition to significant computational improvement,
vector peeling provides more flexibility than spatial smooth-
ing. Indeed, in spatial smoothing once the subarray dimen-
sion is chosen it is difficult to change it because this requires
eigendecomposition for a matrix of different dimension. In
vector peeling, the subarray dimension can be changed dy-
namically based on the environment (without reperforming
the eigendecomposition).

5. SIMULATION RESULTS

In simulations, we assumed equispaced linear array of 10 om-
nidirectional sensors with A/2 interelement spacing and 2
fully coherent sources impinging from 0° and 4° and having
the phase difference 7/2 in the first array sensor. The num-
ber of snapshots in each simulation run was equal to 100. In
spatial smoothing, we assume m = 7 that corresponds to the
optimal subarray choice [8]. In vector peeling, we assumed
the same dimension of peeled vectors and use maximally “sep-
arated” vectors VP(i11,1,7) and VP(11,4,7) for estimating
the signal subspace.

It is well known that conventional MUSIC without any
preprocessing fails in the coherent scenarios. We do not il-
lustrate this fact because it is well documented in [3]. Fig. 1
shows ten plots of MUSIC spectra with spatial smoothing,
while Fig. 2 shows ten plots of spectra (12) with vector peel-
ing, respectively. In this example, SNR = 30 dB. From these
figures, it is clear that both techniques have very similar spec-
tral functions. Figs. 3 and 4 show the root-mean-square error
(RMSE) and absolute bias of DOA estimation versus SNR,
respectively, while Fig. 5 demonstrates the probability of res-
olution versus SNR. A total of 100 independent runs were
performed to obtain each simulated point. The sources were
considered as resolved in each run when DOA estimation er-
ror for each source was less than half of source separation.

The results of Figs. 3-5 demonstrate that vector peeling
algorithm slightly outperforms spatial smoothing technique
because the former has the lower SNR threshold. This es-
tablishes the feasibility of vector peeling as an alternative
approach to spatial smoothing.

6. CONCLUSIONS

We propose a novel preprocessing technique which forms a
basis for alternative computationally efficient solution of the
coherent source location problem. It is shown that this tech-
nique is related to the well known spatial smoothing algo-
rithm. We demonstrate that vector peeling slightly outper-
forms spatial smoothing in terms of RMSE, bias, and proba-
bility of source resolution when both these techniques are em-
ployed with the MUSIC-type DOA estimators. At the same
time, vector peeling approach provides more computational
advantages and flexibility than spatial smoothing.
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Figure 1: Ten MUSIC plots after spatial smoothing.
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Figure 2: Ten plots (12) after vector peeling.
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Figure 3: DOA estimation RMSE.
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Figure 4: DOA estimation absolute bias.
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Figure 5: Probability of source resolution.




