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ABSTRACT

We propose a novel preprocessing scheme� referred to as vec�
tor peeling� as an alternate to the conventional spatial smooth�
ing for solving the multiple source location problem involving
coherent sources or a rank de�cient source covariance matrix�
The essence of the technique is to preprocess the signal sub�
space eigenvectors rather than the covariance matrix as in
spatial smoothing� It is shown by analysis and computer
simulations that these two approaches are related� and that
vector peeling slightly outperforms spatial smoothing when
employed with the MUSIC�type DOA estimators� In certain
instances� vector peeling o�ers advantages in terms of com�
putational simplicity and �exibility� The latter is especially
true with eigenstructure DOA estimators in adaptive estima�
tion problems� i�e�� when the signal subspace eigenvectors are
updated using fast adaptive algorithms�

�� INTRODUCTION

The majority of the popular eigenstructure direction of ar�
rival �DOA� estimation methods such as MUSIC 	
�� Min�
Norm 	��� and others� are known to perform poorly when the
sources are coherent or highly correlated� Spatial smoothing
	� has emerged as a viable technique to combat the problem
of source covariance matrix degeneracy in coherent multiple
source location� This technique has attracted considerable
attention in literature in the recent decade� It has a draw�
back in that it does not lend itself easily when employed with
eigenstructure DOA estimators� In spatial smoothing once
the subarray dimension is chosen� it is di�cult to enlarge or
reduce subarray size as it involves recomputation of eigen�
vectors�eigenvalues� In order to provide such �exibility� it is
more logical to preprocess not the sample covariance matrix
but directly the signal subspace eigenvectors 	��� 	��� We show
how this can be done by means of a process referred to as
vector peeling� We introduce this process and revisit the con�
ventional spatial smoothing technique� Then� it is shown that
spatial smoothing can be reformulated as a eigenvector peel�
ing process� It is demonstrated that these two techniques are
theoretically similar but computationally di�erent and� there�
fore� represent the alternative solutions to coherent multiple
source location problem� After that� we develop vector peel�
ing algorithm for location of coherent sources� Though the
simplest forward�only peeling and smoothing algorithms are
considered� all results can be easily extended to the forward�
backward case� The computational loads of vector peeling
algorithm are compared with that of spatial smoothing tech�
nique and some possible computational advantages of vec�
tor peeling are established for signal subspace updating algo�
rithms� Finally� simulation results are given� demonstrating
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that vector peeling slightly outperforms spatial smoothing for
MUSIC�type estimators in coherent source scenarios�

�� VECTOR PEELING IN RELATION TO

SPATIAL SMOOTHING

De�ne vector peeling as a simple process of generating re�
duced length� overlapping vectors from a given vector as fol�
lows� If x � �x�� x�� � � � � xn�

T is a given n � 
 vector� vector
peeling operator VP��� produces the m� 
 vector�

VP�x� i�m� � �xi� xi��� � � � � xi�m���
T �
�

where m � n� ���T denotes the transpose� Thus� the process
of vector peeling can produce k � n �m � 
 di�erent m �

 vectors VP�x� i�m�� i � 
� �� � � � � n � m � 
 from the
underlying vector x�

De�ne the m � n matrix I�i�m� to be a matrix that has
�rst i� 
 zero columns and last n�m� i� 
 zero columns�
and an m�m identity matrix Im in the middle�

I�i�m� � 	��� � � � � �i��� Im� �i�m� � � � � �n� ���

where �l denotes lth zero column� With this notation� �
�
can be rewritten as�

VP�x� i�m� � I�i�m�x ��

Let us now revisit the conventional spatial smoothing
technique and show how it is related to vector peeling�

Assuming that q �q � n� narrowband plane wave sources
impinge on the equispaced linear array of n sensors from di�
rections ��� ��� � � � � �q and that the additive noise is zero�mean
random process independent from sensor to sensor� the n�n
covariance matrix of array outputs can be written as 	
�� 	���

R � ASA
H � ��In ���

where
A � 	a�����a����� � � � �a��q��

is the n� q direction matrix� a��i� denotes the direction vec�
tor of ith source� S is the q � q source covariance matrix� ��

denotes the noise variance� and ���H denotes the Hermitian
transpose� It is well known 	� that when some of the sources
are mutually coherent� the source covariance matrix becomes
singular and the eigenstructure algorithms of DOA estimation
are no longer applicable� The spatial smoothing preprocess�
ing scheme 	� restores the rank of source covariance matrix
by partitioning the array into k overlapped subarrays with
dimension m � n � k � 
 �m � q� and by averaging the
subarray output covariance matrices� The m�m output co�
variance matrix Rfig of the ith subarray can be represented
as�

R
fig � I�i�m�RI

T
�i�m� ���



and the m�m spatially smoothed covariance matrix as�

�R �



k

kX
i��

R
fig �




k

kX
i��

I�i�m�RI
T
�i�m� ���

Write the eigendecomposition of the matrix ��� as

R �

nX
l��

�lulu
H
l ���

where �l� l � 
� �� � � � � n are ordered �in a nonincreasing order�
eigenvalues of R� and ul is the eigenvector corresponding to
the lth eigenvalue �l� Taking �� and ��� into account� we
can rewrite ��� as

�R �



k

kX
i��

nX
l��

�lVP�ul� i�m�VP�ul� i� m�H ���

Therefore� the spatial smoothing preprocessing can be refor�
mulated through the vector peeling process applied to the
eigenvectors of R� The signal subspace of the covariance ma�
trix R in a coherent case is rank de�cient and consists of the
set of eigenvectors� corresponding to the nonzero eigenvalues
of the matrix ASAH � In other words� if the rank of this ma�
trix is p �p � q�� the signal subspace is given by the set of
eigenvectors fu��u�� � � � �upg corresponding to the p largest
eigenvalues of R� Thus� we have

R � ��In � ASA
H �

pX
l��

��l � ���ulu
H
l ���

From �� and ��� it follows that after the spatial smoothing
preprocessing the n� n matrix ASAH is transformed to the
m�m matrix�

gASAH �



k

kX
i��

pX
l��

��l����VP�ul� i�m�VP�ul� i� m�H �
��

As in spatial smoothing� the de�cient signal subspace of di�
mension p is restored by vector peeling process� The peeled
vectors are no longer the eigenvectors of the smoothed covari�
ance matrix� From �
�� it follows that the relationship be�
tween the vector sets corresponding to signal subspaces before
and after spatial smoothing can be written as�

fulgl�������� �p
smoothing
�� fVP�ul� i� m�g l � ���� � � � � p

i � ���� � � � � k

�

�

Expression �

� represents the new way of restoring signal
subspace through vector peeling which is theoretically similar
but computationally di�erent from spatial smoothing because
latter is applied to the covariance matrix and the former to its
eigenvectors� Since the dimension of signal subspace of the ex�
act smoothed covariance matrix cannot exceed q� a subset of
vectors in fVP�ul� i�m�gmay be linearly dependent if kp � q�
Furthermore� it follows from the equivalence in ��� that vector
peeling requires the same number of minimum array elements
to fully restore the dimension of the signal subspace as spatial
smoothing and vice versa� In the �nite number of snapshots
�sample� case� �

� is also valid but vectors fVP�ul� i�m�g are
linearly independent unless kp � m because of the noisy char�
acter of covariance matrix eigenvectors� Nevertheless� both
in the �nite and in�nite number of snapshots cases kp � q
vectors of the vector set fVP�ul� i� m�g are redundant� The

situation in the sample case is complicated by the necessity to
estimate the rank q of signal subspace in order to determine
how much peeled vectors are redundant�

�� ALGORITHM DEVELOPMENT

In this section� we develop the coherent source location al�
gorithm using vector peeling process� After a general formu�
lation of the algorithm� we concretize each step taking into
account both computational and performance factors� Then�
we show that the computational load of our algorithm is less
than that of spatial smoothing in the case of adaptive algo�
rithms updating signal subspace dynamically 	���

Assume that the estimate �q of the number of sources is
available and that h �h � p� eigenvectors �u�� �u�� � � � � �uh corre�
sponding to the largest eigenvalues of the array output sample
covariance matrix are updated by one of the eigendecompo�
sition algorithms 	��� The general form of the source location
vector peeling algorithm can be written as the following se�
quence of steps�

� Step �� Find the set of peeled vectors fVP��ul� i�m�g�
l � 
� �� � � � � h� i � 
� �� � � � � k as a result of applying
the vector peeling process �
� to the vector set f�ulg�
l � 
� �� � � � � h�

� Step �� Choose �q independent vectors g��g�� � � � �g�q fr�

om fVP��ul� i�m�g� l � 
� �� � � � � h� i � 
� �� � � � � k�

� Step �� Calculate the MUSIC�type of DOA estimate�

f��� �



aH���PNa���
�




m� aH ���PSa���
�
��

where the m� 
 vector

a��� � �
� expf�j��	g� � � � � expf�j���m� 
�	g�T

	 � �d
c� sin �� �� is the center frequency� d is the
interelement spacing� c is the propagation speed�

PS � G�GH
G���GH � PN � I�PS �
�

is the m �m projection matrices onto the signal and
noise subspaces� respectively� and

G � 	g��g�� � � � �g�q�

is a m� �q matrix�

Let us now concretize the steps � and  of this algorithm�
Note that the vectors for constructing the projection matrix
in �
� should be chosen from the peeled eigenvectors that
correspond to the larger eigenvalues of the array output sam�
ple covariance matrix because they tend to be more stable 	���
If the total number of array sensors is large compared to the
number of sources� then only one eigenvector �corresponding
to the largest eigenvalue� may be enough for vector peeling
�i�e�� choose h � 
�� Of course� the appropriate choice of
m and k is necessary in this case� When an eigenvector �u is
peeled� it is better to choose relatively well �separated� peeled
vectors� i�e�� vectors VP��u� i��m� and VP��u� i��m� such that
ji� � i�j is large�

The main question that appears when implementing the
algorithm is how to estimate the dimension of signal subspace�
Possible solution to this problem is to use one of the existing
coherent MDL criteria �see 	�� and references therein�� In this
case� the estimate of �q can be updated in parallel with signal
subspace eigenvectors� Because of relatively high computa�
tional cost of the coherent MDL methods� it is convenient to



update number of sources less often �i�e�� with much smaller
rate� than the eigenvectors� This means that employing the
coherent MDL method� one should take much larger time in�
tervals between neighboring updates of the number of sources
than between the neighboring updates of highest eigenvec�
tors� Such type of double�rate parallel updating of number of
sources and eigenvectors is well motivated for the situations
with moving sources� where continious �unceasing� changes
of eigenvectors occur always while abrupt changes of number
of sources occur from time to time only�

It is ideal from a computational point of view to take
the orthonormalized vectors from the output of any vector
orthonormalization procedure as the required vectors g�� g��
� � � � g�q � In this case� the equation �
� for the projection
matrix is simpli�ed to�

PS �

�qX
l��

glg
H
l �
��

From these considerations� we can rewrite the algorithm
in a more concrete and computationally e�ective form� Let us
assume that only the �rst sample eigenvector �u� is calculated�
Then� the sequence of steps of vector peeling algorithm is as
follows�

� Step �� Find the set of peeled vectors fVP��u�� i�m�g�

i � 
� �� � � � � k using �
��

� Step �� Apply one of the existing vector orthonormal�

ization procedures 	�� to the �q vectors from this set� In�
volve in this procedure maximally �separated� peeled
vectors �i�e�� maximize the di�erence in index i between
these vectors�� On the output of this procedure� one
have the orthonormal basis g��g�� � � � �g�q for signal sub�
space�

� Step �� Calculate the MUSIC�type of DOA estimate

�
�� using �
���

On the Step �� a variety of stable and computationally ef�
�cient vector orthonormalization procedures with complexity
O�q�m� are available 	���

�� COMPARISON OF COMPUTATIONAL LOADS

Let us now compare the computational loads of our algorithm
in terms of complex �ops� with that of spatial smoothing
when applied to the DOA estimation problem using adap�
tive algorithms that update the signal subspace eigenvectors�
The computational complexity of the fastest adaptive algo�
rithms is O�hr� �ops per updating step 	�� where h is the
number of desired eigencomponents� and r is the eigenvec�
tor dimension� Here� we do not consider the computational
loads of the MUSIC function calculation because they are
the same for both algorithms� Therefore� spatial smooth�
ing based technique requires O�km�� �ops for covariance ma�
trix smoothing and O�qm� �ops for updating algorithm itself�
per step� respectively� Taking into account that km � q al�
ways� we have that the complexity of spatial smoothing is
O�km�� � O��n �m�m�� per updating step� In turn� eigen�
vector peeling based technique requires O�n� �ops for updat�
ing the highest eigenvector and O�q�m� �ops for vector or�
thonormalization per updating step� respectively� Therefore
the total complexity of eigenvector peeling is O�q�m� �O�n�

�Each �oating point operation ��op� is de�ned as either com�
plex addition or complex multiplication ��	�

per step� Evidently� eigenvector peeling provides signi�cant
computational improvement�

For example� for large array and relatively small num�
ber of sources� the number of subarrays is typically chosen
such that k � q in order to provide the suitable compromise
between the size of working aperture and the source decorre�
lation e�ect 	��� In this case� the computational complexity
of spatial smoothing may be dramatically higher than that
of vector peeling� For instance� for n � 
��� m � ��� q � ��
we have that spatial smoothing requires 	 
�	 �ops� while
eigenvector peeling requires only 	 
�
 �ops�

In addition to signi�cant computational improvement�
vector peeling provides more �exibility than spatial smooth�
ing� Indeed� in spatial smoothing once the subarray dimen�
sion is chosen it is di�cult to change it because this requires
eigendecomposition for a matrix of di�erent dimension� In
vector peeling� the subarray dimension can be changed dy�
namically based on the environment �without reperforming
the eigendecomposition��

�� SIMULATION RESULTS

In simulations� we assumed equispaced linear array of 
� om�
nidirectional sensors with �
� interelement spacing and �
fully coherent sources impinging from �� and �� and having
the phase di�erence �
� in the �rst array sensor� The num�
ber of snapshots in each simulation run was equal to 
��� In
spatial smoothing� we assume m � � that corresponds to the
optimal subarray choice 	��� In vector peeling� we assumed
the same dimension of peeled vectors and use maximally �sep�
arated� vectors VP��u�� 
� �� and VP��u�� �� �� for estimating
the signal subspace�

It is well known that conventional MUSIC without any
preprocessing fails in the coherent scenarios� We do not il�
lustrate this fact because it is well documented in 	�� Fig� 

shows ten plots of MUSIC spectra with spatial smoothing�
while Fig� � shows ten plots of spectra �
�� with vector peel�
ing� respectively� In this example� SNR � � dB� From these
�gures� it is clear that both techniques have very similar spec�
tral functions� Figs�  and � show the root�mean�square error
�RMSE� and absolute bias of DOA estimation versus SNR�
respectively� while Fig� � demonstrates the probability of res�
olution versus SNR� A total of 
�� independent runs were
performed to obtain each simulated point� The sources were
considered as resolved in each run when DOA estimation er�
ror for each source was less than half of source separation�

The results of Figs� �� demonstrate that vector peeling
algorithm slightly outperforms spatial smoothing technique
because the former has the lower SNR threshold� This es�
tablishes the feasibility of vector peeling as an alternative
approach to spatial smoothing�

�� CONCLUSIONS

We propose a novel preprocessing technique which forms a
basis for alternative computationally e�cient solution of the
coherent source location problem� It is shown that this tech�
nique is related to the well known spatial smoothing algo�
rithm� We demonstrate that vector peeling slightly outper�
forms spatial smoothing in terms of RMSE� bias� and proba�
bility of source resolution when both these techniques are em�
ployed with the MUSIC�type DOA estimators� At the same
time� vector peeling approach provides more computational
advantages and �exibility than spatial smoothing�
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Figure 
� Ten MUSIC plots after spatial smoothing�

-10

0

10

20

30

40

50

-60 -40 -20 0 20 40 60

D
O

A
 E

S
T

IM
A

T
E

 (
D

B
)

ANGLE (DEGREES)

Figure �� Ten plots �
�� after vector peeling�
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Figure �� DOA estimation absolute bias�
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