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ABSTRACT

RF transmissions are often done along multipath channel,
due to reflections. A physical model of propagating along
such a channel is available, and takes into account few
parameters as angles of incidence of waves on the array,
group delay for each path, Doppler shift, polarization. In
order to compensate Rayleigh fading, a spatio-temporal
separation of multipaths is proposed. Usually, this is done
by transmitting a training sequence (known), which
reduces the data rate. We show in this paper that a passive
identification can bhe performed, using only received
signals. Proposed algorithm proceeds in two steps: the first
step is a blind deconvolution, and then a parametric
estimation of the channel is performad. Many simulations
exhibit performances of proposed algorithms.

1. INTRODUCTION

Radiocommunications through a multipath channel are
mainly limited by Rayleigh fading and intersymbol
interference. This 1s a cause af strong failure in the
transmissions (measured by error probability for instance).
This can be overcame by identification of propapation
channel. The classical way is the sending of a (known)
training sequence, whose corresponding response through
the channel leads, after a parametric identification by
spatio-temporal high resolution methods [1], to the
propagation conditions (this is an acrive identification).
Unfortunatly, propagation channels are almost always non-
stationary. Channels parameters have to be updated by
sending periodically the training sequence, reducing thus
the transmission rate.

The purpose of this paper is to propose a passive
identification alporithm, which needs no traming sequence,
allowing then a higher transimssion rate and requiring no
specific device to send and receive the training sequence.
This algorithm performs in two steps:

© first, a blind deconvolution provides an estimation of
the impulse response of the channel,

@ secondly, a spatio-temporal high resolution method is
applied on previous results, giving caracteristic parameters
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of the channel. This requires a parametric model of the
impulse response.

The organization of this paper is as follows. In section 2,
we recall a parametric model of a multipath channel. In
section 3 are presented three recent blind deconvolution
algorithms, which are furthermore relied to the maximum
likelihood estimation. A parametric estimation of the
channel is suggested in section 4. Some simulations
illustrate properties of proposed algorithms in section 5.

2. APARAMETRIC MODEL OF PROPAGATION

First let's introduce some notations and definitions:
- 5(.): signal emifted by the sowrce;
- M number of paths;
- N number of sensors on the receiving array,
- 7.0, A, proup delay, azimuth and elevation

angles of the signal transmitted through the m™ path;
- @, attenuation on the m" path. It is Rayleigh
distributed if’ line of sight (LOS) path iz absent, and

follows a Rice distribution in the opposite case [2];
- ¢,,: random phase uniformly distributed on [0,2x].

The impulse response between the emitter and the i"
sensor, noted ,(f), 1s given by [2]:

Af
B = a,a(0,,8,80 -1, fori=1.,N(1)
wr=1
where a4,(8,A) is the response of the i” sensor in the
bearing defined by ¢ and A, relatively to a sensor of
reference. For simulation convenience, we shall consider,
in the sequel, that only one angle, noted £, is unknown.
The signal reaching each sensor is perturbed by an additive
noise, assumed to be gaussian, zeromean and of variance
&, white both spatiaily and temporally:
x(ty=(h*sk)+n(0), for i=1.. N )
The numerical impulse response involves not only the one
of the channel, previously described, but takes into
account the additional devices used to send and receive the
signal, as shown on fipure 1.
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Figure 1; A numerial transmission through a multiputh chemmel,

In this paper, we assume that the lowpass filter is ideal,
that is its transfer function is equal to | in the bandpass
and 0 elsewhere. Its impulse response is the sinc function.
Unfortunatly. this is a non causal, TIR filter. In order to
work with a causal, FIR filter, we must make the former
causal, and take only a finite number (L+1) of cefficients.
The numerical impulse response is then:
Ad
hk]= 03 a,a,(0,) e sinc(k ~ F,7,) ke{0l,.. L}
=1

hlk]=0 for k<0 or k>1
(3)

A more peneral model, including Doppler shift and
polarization for example, can be used Estimation of all
these parameters may complicate explanations but poses
no theoretical problem.

3. BLIND DETERMINATION OF THE IMPULSE
RESPONSE

3.1 Feasabilicy study
The blind deconvolution aims at estimating the ¥ impulse
responses A, [k], without knowing the emitted sequence.

The question is whether it is possible to find VN filters
g,[£ allowing to invert the input/output relationship, as

explained on figure 2, in the noiseless case:
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Figure 2: Framework of the multichamel blind deconvolution.

By taking the z transform, it comes:

N =H(DH)8z), for i=1.. N, 4
If S(z) is a polynomial, and if [f,(2).....{],; () (which are
polynomials of degree . since they correspond to FIR
filters) are coprime, 8(z) is the highest common factor of
X(z)..., A, (2). According to the generalized Bezout
theorem, there are ¥ polynomials (f(z},...,G,(z) such
that:

K
DG (=1 (5)

=1

The blind deconvolution of FIR multichannel is realized
by:

M
$(2)=2.G (D)X ,(2). (6)

=1
3.2 Representation of spatio-temporal data

The output of the i® sensor at the time k is given by the
convolution product:

Zh s(& - 1] +4[4]. %))

There are two ways of writting the data under vectorial
shape:
© as the set of the outputs of the whole array at time k:

(k) =[x[k] - wlk] ®)
This becomes. according te the emitted signal:
x[k]=Hs[k,L +1]+n[4], ("
with
m[o] - m[2]
H= : (10
no[0] o Ay[f]
and

sk L+1]=[s[4] s[e-2])". ()
The noise vector n[4 | has the same shape as x[£].

Finally, the outpuis are gathered in a spatio-temporal
vector according to the following framework:

=" - x[K]T]T. (12)

® ag the set of the outputs of the i™ sensor for K
successive snapshots:

x =[x{&] - w1 (13)
It can be written, according to the emitted siymal values:
x, = s{K,K~7]-n,, (14)
with S bemnga K x (K + L) Sylvester matrix:
Rlol om0 o o
0  h|O ce hL
IO I a5
0 0 [0 h[! ]J

and

S[K.K + L] =[5[K] -2 (16)
Finally, the whale set of data can be pathered i a spatio-
temporal vector:

o 4T
x:[x]] 1:\,|] R (L7
which may be written this way:
x:ﬂJs[K.K I L] bm, (18}

with
- RN
w=[m T (19)



The aim of the section 3.3 is to estimate the coefficients of
the impulse responses, ordered in a single vector:

h=[#[0] Rir) ko] - R[n]] 20y

3.3 Presentation of the three studied methods
We shall compare in the sequel three algorithms for the
blind deconvolution of the multichannel. They all need the
assumption that the & transfer functions{, (z) are coprime
{see § 310
3.3.1 Subspace method [3]
The input/output relationship, in the noiseless case, can be
written as {18):

y=GIs. b
Subject to K+ L < KV, the observation y belongs to the
subspace spanned by the columns of 3. The determination
of a base of the orthogonal subspace gives, for each vector
u, of this base an equation SHu, =0, which is linear
relatively to the coefficients of the impulse response.
The excessive number of equations respect ta number of
unknowns coefficients leads to a least squares solution.

3.3.2 Least squaves approuch [4]
The ¥ equations (4), which can also be written:

S(zy=- . (22)
H (=) Hy(z)
give N(A —1)/2 polynomial equalities:
Hi2)X, (2)= HJ.(z},‘L’,.(z], (23}

This system being overdetermined, admits a least squares
solution.

3.3.3 Prediction error method 3]

Provided that the symbels s{£] stem from a zero-mean
white process, the deconvolution amounts to find, from the
writing (12), the innovation of an autoregressive process
by a linear prediction method.

3.4 Connexion with conditionnal maximum likelihood
method (CML)

The input s[k] is considered as an unknown data, the

parameters to be estimated beiny the K{/. +1) coefficients

of the impulse responses. The enly random data is the

additive noise.

Under the assumption of white additive noise, the

likelihood of observations on sensors is:

] l
p(x|h.s) = - exp{ - ||x—?445||2|l. (24)
[ . 2] 20 )
v 2Ana

.

The CML criterion leads to the mmimization of:
Ots, ) =[x - sl =[x —3["- (25)
In order to eliminate s, we must search for the mmimum of

¢} refatively to 5. which will only depend on h.
Let's notice that (25) can be rewtitten:

Os.hy = rl(x—yx - "), (26)
which leads to:

d@=t{G.ds" +6" ds). (27
with
G = s — iy (28)

Subject to ¥ being full column rank, we can easily
deduce, from (27) and (28) the CML estimation of s:

§=("an s, (29)
and of x.
3 =S e e s, (30)
The criterion to be minimized becomes:
2 a
Q, () =[x~ x| =[x 3D

where [I, = HH M)W is the projector on the
subspace spanned by the columns of F} (signal subspace},
and T1, is the projector on the orthogonal subspace (noise
subspace). 9 is linear im h while IT, is strongly nomn-
linear.

[Let's notice that these results can be naturally connected to
the methods proposed in § 3.3.

O The first is based on a pre-estimation of signal subspace.
It requires several spatio-temporzal observations as defined
by (17), for signal vectors s assumed to be independent.
This step of simal subspace pre-estimation may be
inaccurate if only few measures are available.

® Concerning the second method, let's simply notice that
CML method (see (31)) amounts te maximize the
following quantity:

0 =l —elstsn wtats), G2

where the factor J''x seems to be the convolution of the
cutput by the candidate filter. The influence of (g™
canl be minimized by a constraint on h.

€& The third method (error prediction), based on strong
hypothesis on s, could be connected to stochastic
maximum likelihood (SML3Y, under the hypothesis

E[ss“] =1,
Let's finally note that the three algorithms presented are
only approximations of maximum likelihood method.

Actually, this one is too complex to be applied and one
prefers to use suboptimal but more simple algorthms.

4. PARAMETRIC ESTIMATION OF THE CHANNEL

Once impulse response has been estimated in the shape
defined by (20), we wish te extract the values of the
spatio-temporal parameters ( 7, /).

From (3), we can write:
Af

= Zam e o(0,.1,), (33)
m=1

(8, .7, ) bemmyg a vector of lenpth A(7. +1) which s

charactenistic of the propapgation on the m™ path, and
defined by:



o 6,7) =[a,(fsine(- 7F,) a(@sinc( L - 7F,)
ay(Bsnc(-1F,) ay(@snc(L - F,)]'

(34)
Theoretical impulse response is then a linear combination
of M vectors ¢(6,7), nammed spatio-temporal steering-

vectors. It is no longer the case for its estimate h , because
of estimation and modelization noises. We shall modify
equation (33) by adding a noise w which takes into
account these uncertainties:

M )
h=>a,e™«0,,7,)+w. 35)
m=1

The set of parameters {(Hm,rm);mzl,...,M} can be

estimated by using the spatio-temporal high resolution
method MUSIC [1]. It requires a number P of estimations
and the computation of their covariance matrix:

L&, -
R,=—Y hh" (36)
P

Finally, one have to compute its eigen-decomposition and
then to maximize the MUSIC pseudo-spectrum.

S. SIMULATIONS

Computer simulations have been conducted to evaluate
performances of the proposed algorithms. The receiver est
a uniform linear array with N =5 sensors. Data are
sampled the baud rate. The emitted signal is a FSK
modulation. Propagation splits the channel into A/ =3
paths, characterized respectively by angle of incidence and
group delay, expressed in symbol rate, (30°,0), (55°;3.4)
and (69°;4.1). Impulse response, for the first sensor, has
been drawn on figure 3.
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Figure 3: Real impulse response (__) and estimated one ().

Wehwaiseddhmpure oot premadm stiens
drawn on figure 3. In order to measure their performances,

we have computed (figure 4) the root mean square error of
each estimation, defined by:

1 1 o -2
IL\/ISE(h):‘/————Z“h,—hf‘ €Y
N, N(L+)S

where N, =100 is the number of trials.

These algorithms estimate impulse responses of length 7
(L=6). K=12 are used to build the spatio-temporal
observation (for subspace method). The three algorithms
perform with the same number of snapshots (420).
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Figure 4: Root mean square error on estimation of impulse responses.
(LS: least squares - SM: subspace method - PE: prediction error)
The spatio-temporal method MUSIC is then applied to
prévious results in order to estimate angles of incidence
and group delay. We have drawn on figure 5 RMS errors

on estimations of parameters, defined as in (37).
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Figure 5: RMS error on parametric estimation.

LS approach presents best performances. This is probably
due to the fact that SM works, in these simulations, with
short data. PE method is known to be robust to an
overdetermination of the order of impulse response, but it
is not the case here since the real IR is infinite.

6. CONCLUSION

We have presented an algorithm for the passive
identification af a multipath channel. This one uses recent
studies on blind deconvolution and we have compared
three algorithms. Best results are provided by the least
squares approach, which is furthermore the simplest one.
We think that making this method adaptive is promising in
non stationnary context.
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