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ABSTRACT

This paper presents a novel approach to weight
adaptation of single-layer perceptron (SLP) bused
comemunication channel equalisers, by developing the
Least-Mean-Absolute-Error adaptive algorithm using
the absolute-error cost function. Theoretical and
experimental results are provided and comparisons
made between the present algorithm and the
traditional back-propagation, Rosenblatt and lingar
LMS algorithms. This work shows that the proposed
algorithm is faster in adapting the weights of the SLP-
based equalisers and leads to better estimation

performance.

1. INTRODUCTION

Adaptive filtering algorithms have been
widely used for adjusting the weights of channel
equalisers in digital communication systems [1, 2]. In
particular, the least-mesn-squares (LMS) and back-
propagation (BP) algorithms have been extensively
exploited for the development of linear and non-linear
equalisers, respectively [1, 5, 6]. The application of
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these adaptive algorithms is rooted in the clarity, in
terms of the statistical concepts, and computational
simplicity of the quadratic cost function that they
employ. However, their performance may well not be
universally the optimal, Other adaptive algorithms
based upon non-quadratic cost function can also be
defined to improve the adaptation performance. For
cxample, the absolute-error cost function has been
successfully applied to developing an algorithm for
linear systems |3]. The present work investigates the
use of such a cost function in the development of an
adaptive algorithm for single-layer perceptron [4, 7]
based non-linear tilters for communication channel
equalisation.

To be self-contained, a briet overview of the
channel equalisers implemented using a SLP is
provided next. The description of the Least-Mean-
Absolute-Error adaptive algerithm 1s then presented.
A substantial part of this paper is dedicated to the
performance analysis of the proposed algotithm in
terms of the mean-squared-error, convergence rate and
bit-error-rate.

2. CHANNEL EQUALISATION USING
SINGLE-LAYER PERCEPTRON

The digital data communication task
considered herein requires transmitting a binary signal



(1 or -1y sequence, S(f} = {s(4), s(t-1), s(r-2) ..,
s(t — AT}, s(t-N+1-M)}, passing through a
dispersive channel modelled as a fimte impulse
response filter [2]. The task of a channel equaliser is
to recenstruct the signal s(f—AT) using the
observations X{s) = {x(z), x(+-1). x(t-N+ 1},
obtained at the channel output that are cortupted with
noise, where M, N and AT are known as the order of
the channel model, and the order and delay of the
equaliser. In this paper, a channel equaliser is
implemented with a single-layer perceptron (SLP)
unless otherwise stated. Such an equaliser consists of
a set of N input nodes and a single output node
which performs the bipolar sigmoid non-linear

mapping:
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where y(1) = W7 (1) X{¢) is a weighted sum of the past
inputs, with W{t} = {w,(t), wi(£), ..., wy_ (1)}
representing the tap weights modified by an adaptive

algorithm.

3. LEAST-MEAN-ABSOLUTE-ERROR
ADAPTIVE ALGORITHM

The utilisation of a specific cost function
plays an important role in the development of the
corresponding  adaptive algorithm while using the
method of gradient decent. Different cost functions
generally result in different algorithms. Here, the
algorithm for weight adaptation is deduced using the
following absolute-error cost function, where le(f)l is

the absolute error between the transmitted signal
5(t — AT) and the estimated signal ¥, (r):

J,(ty=2Elle()l | =2E[Is(z — AT) — y,{£)]
Minimising this cost function, by following the

method of gradient descent, leads to the formula for

weight adaptation:
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where the parameter p denotes the adaptation step
size which controls the stability and the rate of
convergence of this algorithm, and sign(e(t)} =1 if
e(t) >=0, and -1 if e(:) < 0. To acknowledge the use
of the absoluote-error cost function, this method for
weight modification is termed the Least-Mean-
Absolute-Error {LMAE) adaptive algorithm.

In order to analyse the performance of this
algorithm, it is interesting to compare it with two
representative perceptron fearning algorithms, i.e. the
BP and Rosenblatt algorithms [4, 5, 7] which are
based on the following two cost functions,
respectively:

2 ()= E[€* (1]
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For the SLP-based equalisers, these two traditional
adaptive algorithms can be represented such that

Wy (e + 1) =W (0 + pe(t)(1=-y; DX " (2)
Wt + )= W, () + pe ()X 7 ()

Obviously, the LMAE algorithm replaces the
term e(t) within the standard BP algorithm with
sign( e(t)). This results in a number of important
advantages in utilising the LMAE algorithm for
developing SLP-based equalisers. Firstly. one tloating
point multiplication is saved for each weight



adaptation, which leads to simpler computation and
hence increases the efficiency of training the
equaliser. Secondly, if the actual output v {f),
¥; {t) € [-1, 1], of the equaliser has the same sign as
the transmitted signal s(t — AT), then le()| < |,
therefore, Isign( ()}l > {e{s)| which allows more
rapid convergence along the correct direction of
weight adaptation. Thirdly, if le(t)1 > | or y,(#) has
the opposite sign of s(r — AT), then lsign(e{t)) <
le(t)!. This allows the gradient value, sign{e(t}),
within the LMAE algorithm to become lower than that
within the BP algorithm, implying that the LMAE
algorithm is less sensitive to noise,

Compared with the Rosenblatt algorithm, the
weight adaptation process using the present approach
is much more stable, even with a larger learning step
size. This is due to the use of the bipolar sigmoid
function in the SLP-based equalisers, instead of
merely the hard-limiter (or sign operator). In fact, for
the Rosenblatt algorithm, the output error is defined
by ¢ (1) = s(t — AT) - sign( y(£) ) which differs from
that used in the LMAE and BP algorithms. In so
doing, if e.(f) = 0, no adaptation is carried out;
whereas if ¢, (1) # 0, the weights are changed by
adding or subtracting a term of 2px(#) . Therefore, the
weight moditication process using the Rosenblatt
algorithm is rather abrupt and is restricted to the
employment of a much smaller adaptation step size,
though it offers simpler computation than the other
two.

4. SIMULATION RESULTS

The advantages of utilising the LMAE
algorithm are confirmed with a  variety of
experimental  results.  Within  this  paper, a
communication channe! is simulated by a first-order
non-minimum phase model: H{z)=05+10z"". The
channel output is corrupted by a white Gaussian noise
with zero mean, and the order and delay of the
equaliser are assumed to be 5 (with the SLP employed
having 5 input nodes} and 1. For comparison
purposes, simulations have alsa been carried out,

under the same conditions, on another two SLP-based
equalisers (one with the bipolar sigmoid mapping and
the other with a hard-limiter) and on a linear equaliser
with their weights being adapted using the BP,
Rosenblatt and LMS algorithms, respectively.

The learning curves of the simulated systems
are shown in Figure |, where the signal-to-noise ratio
(SNR} at the input of each equalisation system is
20dB. The average of the resulting estimation ervors
of 200 independent simulations 15 presented to
demonstrate the performance of the LMAE algorithm.
With respect to the same number of weight
adaptations, the remaining mean-square-error {(MSE)
of the equaliser adapted with the LMAE algorithm is
much less than that with the BP algorithm, although
both equalisers share a commen structure. Also, bath
LMAE and BP algorithms offer a better MSE
performance compared with the Rosenblatt algorithm,
demonstrating that the use of the bipolar sigmoid
mapping provides better results than using a hard-
limiter. Additionatly, this figure shows a sharp
contrast between the performances of the linear and
non-linear equalisers. Indeed, no matter whether the
Rosenblatt, BP or LMAE algorithm 1s utilised for
adapting the SLP-based systems, the remaining
estimation error is considerably smalier than that of
the lincar equaliser. This is owing to the non-linearity
of the mapping {unction tnherently embedded within
such systems. Moreover, the convergence rate of the
cqualiser adapted with the LMAE algorithm is much
faster than that of the equaliser of the sume structure
but trained with the BP algorithm.

In terms of bit error rate {BER), Figure 2
illustrates the results using the LMAE, BP, Rosenblatt
and linear LMS algorithms for the same channel
equalisation task with a varying signal-to-noise ratio
{SNR). These results indicate that the use of the
LMAE algorithm offers the best BER performance,
particulurly when the SNR is decreased. Also, the
LMAE and BP algorithms both provide a better BER
performance than that of using either the Rosenblatt
algorithm or the linear LMS algorithm.



5. CONCLUSION

This paper presents an investigation of using
the absolute-error cost function and the resulting
Least-Mean-Absolute-Error (LMAE) adaptive
algorithm for the development of single-layer
perceptron based communication channel equalisation
systems. This work demonstrates that the LMAE
algorithm offers a good overall performance in
developing channel equalisers with increased
convergence rate, improved estimation accuracy and
reduced bit error rate. Further, the use of this
algorithm allows for the reduction of computation
effort as compared with using the back-propagation
algorithm.
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