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ABSTRACT

Without use of the well�known �independence assump�
tion� an exact analysis of the LMS�type tapped�delay
line adaptive �lter is provided� valid for small adapta�
tion constants� For arbitrarily coloured excitations� the
steady�state weight�error correlation matrix satis�es a
Lyapounov equation� which under special conditions ad�
mits a closed�form solution�

� INTRODUCTION

In the past twenty years� the basic theory of LMS�type
adaptive �ltering using a tapped�delay line �TDL� struc�
ture has been throughout based on an �independence as�
sumption� �	
 stating statistical independence of succes�
sive input vectors� But this assumption is questionable�
within an updating cycle all input vector components
are merely shifted to the next place with the last com�
ponent removed and the �rst component renewed� Such
a strong deterministic coherence between successive in�
put vectors in a TDL structure obviously con�icts with
the independence assumption� Nevertheless� justi�ed by
a lack of competitive methods� the assumption was and
is still widely accepted� despite its lack of consistency
and despite the general� growing awareness of this de�
�ciency� Concerning the assumption Gardner �

 states
that �in order for such a relatively comprehensive analy�
sis to be tractable� there is one simplifying assumption
that cannot be removed� thus expressing a general feel�
ing that it is indispensable for any analytic approach of
the LMS algorithm� It leads to conclusions that agree
fairly with experimental observations� particularly for
small �adaptation constants�� and can be supported by
a number of sophisticated plausibility arguments ��
�
Recently� two ways have been proposed to avoid the

independence assumption� thus liberating adaptive �l�
ter theory from an unsatisfactory tool and enabling
a logically consistent teaching in this �eld� The �rst
way owing to Douglas et al� ����
 provides an ex�
act computer�aided mean and mean�square performance
analysis� which� however� becomes rather laborious for
multi�tap �lters� The second method ��
 yields analytic
results� but is con�ned to the limit of small adaptation

constants� A generalization set up as a power series
in terms of the adaptation constant soon becomes in�
tractable ��
� in fact� it predicts not more than some
�experimentally veri�ed� weak higher�order e�ects un�
der speci�c operating conditions� Thus only the zero�
order theory pertinent to the theoretical limit of a van�
ishing adaptation constant seems to deserve su�cient
consideration� This con�nement is supported by the
broad range of validity of the zero�order solution� In
fact it provides reliable results for all adaptation con�
stants su�ciently distant from the stability boundary�
Remarkably� various statements of the zero�order theory
are not con�rmed by the independence theory which�
therefore� cannot claim general validity even for a van�
ishing adaptation constant� It is only under rather spe�
cial assumptions concerning the spectral distribution of
the exciting signals� that the two approaches arrive at
the same results�

In the present paper we address the zero�order the�
ory for an LMS adaptive �lter of the TDL type under
excitation by stationary �input and reference� signals of
any colouring� We concentrate upon the steady state�
in which the weight coe�cients remain �uctuating af�
ter completion of the adaptation phase� Thus we do
not address adaptation transients and tracking prob�
lems� Extending the general outline presented in ��

and adopted in �	
 we derive a Lyapounov equation for
the �weight�error correlation matrix� in the frequency
and time domain� with and without using the eigen�
vectors of the input correlation matrix� Under special
conditions the equation is shown to have a closed�form
solution� Additional attention is paid to the external ef�
fects of the weight �uctuations commonly summarized
under the name �misadjustment��

� BASIC DYNAMICS AND SMALL�SIGNAL

APPROXIMATION

Consider a con�guration� in which an adaptive �lter
tries to imitate a reference �lter� The �lters� both of the
TDL type� are assumed to have equal length M with a
constant M � 	 weight vector h of the reference �lter
and a time�varyingM � 	 weight vector wk � h� vk of



the adaptive �lter �for unequal lengths we have to write

wk � h�w��vk� where h
�w� denotes the Wiener solution

pertinent to h�� Both �lters are excited by the common
�input signal� xk� The output of the reference �lter is
superimposed by an external �reference signal� nk that�
after subtraction of the output signal yk of the adap�
tive �lter� yields the �error signal� ek� The input and
the reference signal xk� nk are assumed to be sample
functions of statistically independent� stationary zero�
mean random processes with unspeci�ed colouring� If
at k � � these random signals are applied to the sys�
tem and if w� �� h� an adaptation process is initiated
which� in global terms� directs the weight wk towards h�
However� wk does not reach h asymptotically as a lim�
iting value� but oscillates around it with random �uc�
tuations vk� Eventually also this M � 	 �weight error�
vector vk becomes a stationary� zero�mean random sig�
nal� whose statistics are the main subject of the present
paper� Speci�cally we study the M �M weight�error
correlation matrix

V � Efvkvtkg� �	�

whose diagonal elements Vmm denote the �powers� of
the pertinent weight �uctuations� while the o��diagonal
elements Vmn stand for the mutual correlations� Like
any other correlation matrix� V is symmetric �V � V t�
and positive �semi��de�nite �V � ���
For further use we de�ne the M � 	 input vector

xk � �xk� xk��� � � � � xk�M���
t �
�

made up of the scalar input signal and its �M � 	� past
values� The output signal is de�ned as the inner product

yk � wt
kxk � htxk � vtkxk� ���

while the error signal is given by

ek � nk � htxk � yk � nk � vtkxk� ���

Now we discuss the weight updating rule� which for the
LMS algorithm reads as

vk�� � vk � 
�ekxk � vk � 
��nkxk � xkx
t
kvk �� ���

where � is the adaptation constant� Further analysis is
eased by making use of the normalized signals

p

�nk

and
p

�xk� which� for the sake of simplicity� are again

denoted by nk and xk� respectively� The statement ��
is small�� henceforth often tacitly presupposed� is then
phrased as �the power of xk is small�� �The concomi�
tant statement concerning nk is of minor importance
because of the linear dependence of vk on nk�� After
normalization ��� passes into

vk�� � vk � xkx
t
kvk � nkxk� ���

This relation de�nes a deterministic operator �nk� xk��
�vk� such that vk is uniquely determined by the past

values of nk and xk� Remember� however� that only the
scalar input signal xk can be freely chosen� which results
in an inherent coherence in the vector signal xk�
With Rk � xkx

t
k and f

k
� nkxk the system under

consideration belongs to a more general class governed
by the di�erence equation

vk�� � vk �Rkvk � f
k
� ���

Again� we are interested in the steady state� where be�
sides Rk and f

k
also vk is a stationary random signal�

In conformity with our special situation� the M � 	 ex�
citation vector f

k
is assumed to have zero mean� while

Rk is a symmetric� positive �semi��de�nite time�varying
M �M matrix with the mean value R � EfRkg which�
like Rk� is positive �semi��de�nite� In our special case
R means the �input correlation matrix��
It is important to recognize that� due to Rk � ��

the term ��Rkvk� in ��� represents a time�dependent
system damping� Remembering our aim to study the
�lter behaviour for small adaptation constants� i�e� for
small input signals� we have to examine the limiting case
where this damping Rk and herewith R is small �com�
pared to the unit matrix�� Then the system behaves as
an extreme low�pass �lter ��
 implying that the varia�
tions of vk are much slower than those contained in f

k
and Rk� Consequently� the time�dependent dampingRk

in ��� can be replaced with its average R�

vk�� � vk �Rvk � f
k
� ���

Thus for R� � we can solve the simple di�erence equa�
tion ��� with constant coe�cients instead of ���� For
moderate values of R �i�e� for moderate values of the
adaptation constant �� this zero�order solution approx�
imately solves ����
From ��� it can be concluded that in the limiting case

of a vanishing R the required M�M weight�error corre�
lation matrix V as given by �	� satis�es the Lyapounov
equation

RV � V R � F� ���

Here F denotes an �excitation matrix� de�ned as

F �
�X

l���

Eff
k
f t
k�l
g �

�X
l���

Efnknk�lgEfxkxtk�lg�

�	��
Like R� it is symmetric� positive de�nite� and of Toeplitz
structure� In the next two sections proofs are provided
of ���� one in the frequency domain using the eigenvec�
tors of R� another in the time domain without using the
eigenvector representation�

� FREQUENCY�DOMAIN TREATMENT

The signal transformation f
k
� vk pertinent to ��� can

be elegantly formulated in the frequency domain� De�
noting frequency functions by capitals with a tilde� we
�nd for the associated matrix system function

�H�z� � ��z � 	�I � R���� �		�



Let �F ���� �V ��� denote the matrix power spectral densi�
ties of f

k
and vk �i�e� the Fourier transforms of the auto�

correlations F �l� � Eff
k
f t
k�l
g and V �l� � Efvkvtk�lg��

then we have the �local� spectral relationship

�V ��� � �H�ej�� �F ��� �HH �ej��� �	
�

Notice that� in contrast with the familiar scalar case� the
factors in �	
� do not commute� implying that the cen�
tral factor cannot be extracted from the product� The
required weight�error correlation matrix V is found by
averaging the pertinent spectrum over all frequencies�

V �
	


�

Z �

��

�V ���d�� �	��

Now let q
i
and �i denote the orthonormal eigenvectors

and positive eigenvalues of the input correlation matrix
R� then we can formulate �H� �F � �V in normal coordi�
nates� i�e� with respect to the basis of eigenvectors�

�H �
X
i

X
j

q
i
�Hijq

t

j
� �Hij � qt

i
�Hq

j
� �	��

with similar expressions for �F and �V � A special result is
found for the systemmatrix �H� where the representation
�	�� becomes diagonal� �Hij � � for i �� j� in accordance
with �		�� The diagonal elements for z � ej� read as

�Hii � �ej� � 	 � �i�
��� �	��

Next we rewrite the basic relation �	
� in normal coor�
dinates� observing the low�pass character of �Hii�

�Vij��� � �Hii�e
j�� �Fij��� �H

�

jj�e
j��

� �Hii�e
j�� �H�

jj�e
j�� �Fij���� �	��

Performing the ��integration �	�� we obtain

Vij �
�Fij���

�i � �j � �i�j
�

�Fij���

�i � �j
�

valid for small ��s� i�e� for small input signals� Rewriting
this �local� proportionality between Vij and �Fij��� as

��i � �j�Vij � �Fij��� �	��

we recognize ��� in normal�coordinate formulation� In�
deed� �	�� follows from ��� through simultaneous pre�
and post�multiplication by qt

i
and q

j
recognizing that F

in �	�� represents the low�frequency value �F ��� of the
power spectrum of f

k
� The higher frequencies are lost

due to the low�pass character of the adaptive system�

� TIME�DOMAIN TREATMENT

The solution of ��� has the convolutional form

vk � Hk � f
k
�

�X
m���

Hk�mfm� �	��

with Hk the M � M matrix impulse response of the
system� This is determined from ��� as

Hk � uk���I �R�k�� � Ht
k� �	��

where uk denotes the unit step �uk�	 for k � � and zero
elsewhere��
In our context we are interested in the transmission

of stationary stochastic signals� particularly in terms
of their autocorrelations F �l� � Eff

k
f t
k�l
g� V �l� �

Efvkvtk�lg� We �nd a linear relationship of the form

V �l� �
X
m

X
n

HmF
�n�Ht

m�n�l� �
��

from which we obtain the desired �weight�error correla�
tion matrix� V �

V � V ��� �
X
m

X
n

HmF
�n�Ht

m�n� �
	�

Next we decompose �
	� in the form

V �
X
n

T �n�� T �n� �
X
m

HmF
�n�Ht

m�n� �

�

In an attempt to sum up the second series �

� we en�
counter the di�culty that the matrices Hm and F �n� in
general do not commute� thus prohibiting the extraction
of F �n� from the sum� In fact �

� does not admit an
explicit summation� Instead we show that in the small�
signal approximation T �n� satis�es a Lyapounov equa�
tion� To this end we write �	�� in the recursive form
�where the Dirac function �m equals unity for m � �
and zero elsewhere�

Hm�� � �I �R�Hm � �mI � Hm�I �R� � �mI� �
��

This enables us to rewrite �

� as

T �n� �
X
m

HmF
�n�Ht

m�n �
X
m

Hm��F
�n�Ht

m�n��

�
X
m

��I�R�Hm� �mI
F
�n���I�R�Ht

m�n� �m�nI


� �I � R�T �n��I �R� � F �n��I � R�Ht
n �

�I � R�H�nF
�n� � �nF

�n�� �
��

For small input signals� i�e� for a small R� we can ne�
glect the terms RT �n�R� �F �n�RHt

n� �RH�nF �n�� and
approximate F �n�Ht

n and H�nF
�n� by un��F

�n� and
u��nF

�n�� respectively� Thus we arrive at the Lya�
pounov equation

RT �n� � T �n�R � F �n�� �
��

Finally� summing up �
�� over all n and using �

� and
�	��� we �nd ���� Notice that the above derivation does
not explicitly use the eigenvector representation of R�
Due to the statistical independence of nk and xk the

autocorrelation of f
k
equals the product of those of nk



and xk� With Parseval�s theorem the sum over all F �l��
as required in �	��� equals the average of the product
of the pertinent power spectra� This implies that all
frequencies contained in nk and xk equally contribute
to the right�hand term of �	�� representing the zero�
frequency spectral component of f

k
�

� EXPLICITLY SOLVABLE CASES

There are only few cases� which admit a closed�form
solution of ���� One occurs for a white process nk� where
the sum �	�� consists of the single term Efn�kgR which
leads to

V � �
�Efn�kgI� �
��

Thus the weight �uctuations are uncorrelated and have
equal power �

�Efn�kg� This result is also predicted by
the independence assumption �	
� Notice that the power
has a �nite limit for R � �� i�e� for a vanishing input
signal f

k
in ���� This can be explained by an amplifying

property of the low�pass system� which� due to �		�� has
a high �resonance peak� at z � 	� �H�	� � R���
Another explicitly solvable case is found for a white

xk� Then R � Efx�kgI and F and V become Toeplitz
matrices with Fmn � Efx�kgEfnknk��m�n�g and Vmn �
�
�Efnknk��m�n�g� Like the former situation all weight

�uctuations have the same power �
�Efn�kg� while the

correlation between two weight �uctuations equals the
autocorrelation of nk with the time shift replaced with
the spatial distance between the points under consider�
ation� In this sense the autocorrelation of nk is mapped
into a spatial distribution on the delay line�
Returning to the more general case we observe that

the correlation matrices R� F � and V are symmetric
and positive de�nite� With regard to V � it is a basic
property of the Lyapounov equation that it transfers
these properties from the given matrices R� F to the
unknown V � However� this is not true for the Toeplitz
property� It is only for very large �lter lengths M that
V becomes almost Toeplitz �i�e� except for the vicinity
of the matrix border�� A general consequence of the
Toeplitz property of R� F is a double symmetry in V

with respect to the main and the side diagonal ��
�

� MISADJUSTMENT

We close with a brief discussion of the external e�ects of
the �uctuating �lter weights usually designated as �mis�
adjustment�� According to ��
 this should not be based
upon the excess mean�squared error� but be directly re�
lated to the partial output signal owing to the weight
�uctuations�

misadjustment � Ef�vtkxk
�g
Efn�kg

� �
��

where the numerator can be rewritten as

Efvtkxkxtkvkg � EfvtkEfxkxtkgvkg � EfvtkRvkg� �
��

Here we have exploited the fact that xk and vk �uctuate
on extremely di�erent time scales� During some time
interval of length N � vk can be considered as constant�
whereas N is su�cient to evaluate the time average with
respect to xk �which equals the ensemble average� due to
ergodicity�� This leads to a local Ef�vtkxk
�g pertinent
to the �frozen� vk� In a second averaging operation with
respect to vk the �nal Ef�vtkxk
�g is determined� This
runs as follows� With the identities

vtkRvk � tr�Rvkv
t
k� � tr�vkv

t
kR� �

�
� tr�Rvkv

t
k�vkv

t
kR�

and using ��� we �nd

Ef�vtkxk
�g
� �

� tr�RV � V R� � �
�

X
l

trF �l� � �
�

X
l

Eff t
k
f
k�l
g

� �
�

X
l

Efnknk�lgEfxtkxk�lg

� �
�M
X
l

Efnknk�lgEfxkxk�lg�

which �formulated in normalized terms� leads to

misadjustment �
�
�M
P

l Efnknk�lgEfxkxk�lg
Efn�kg

� �
��

Observe that the sum in the numerator can be rewritten
as the average over the spectra of the input and the
reference signal ��
�
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