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ABSTRACT

Without use of the well-known ”independence assump-
tion” an exact analysis of the LMS-type tapped-delay
line adaptive filter is provided, valid for small adapta-
tion constants. For arbitrarily coloured excitations, the
steady-state weight-error correlation matrix satisfies a
Lyapounov equation, which under special conditions ad-
mits a closed-form solution.

1 INTRODUCTION

In the past twenty years, the basic theory of LMS-type
adaptive filtering using a tapped-delay line (TDL) struc-
ture has been throughout based on an ”independence as-
sumption” [1] stating statistical independence of succes-
sive input vectors. But this assumption is questionable:
within an updating cycle all input vector components
are merely shifted to the next place with the last com-
ponent removed and the first component renewed. Such
a strong deterministic coherence between successive in-
put vectors in a TDL structure obviously conflicts with
the independence assumption. Nevertheless, justified by
a lack of competitive methods, the assumption was and
1s still widely accepted, despite its lack of consistency
and despite the general, growing awareness of this de-
ficiency. Concerning the assumption Gardner [2] states
that ”in order for such a relatively comprehensive analy-
sis to be tractable, there is one simplifying assumption
that cannot be removed” thus expressing a general feel-
ing that it is indispensable for any analytic approach of
the LMS algorithm. It leads to conclusions that agree
fairly with experimental observations, particularly for
small ”adaptation constants”, and can be supported by
a number of sophisticated plausibility arguments [3].
Recently, two ways have been proposed to avoid the
independence assumption, thus liberating adaptive fil-
ter theory from an unsatisfactory tool and enabling
a logically consistent teaching in this field. The first
way owing to Douglas et al. [4,5] provides an ex-
act computer-aided mean and mean-square performance
analysis, which, however, becomes rather laborious for
multi-tap filters. The second method [6] yields analytic
results, but is confined to the limit of small adaptation

constants. A generalization set up as a power series
in terms of the adaptation constant soon becomes in-
tractable [7]; in fact, it predicts not more than some
(experimentally verified) weak higher-order effects un-
der specific operating conditions. Thus only the zero-
order theory pertinent to the theoretical limit of a van-
ishing adaptation constant seems to deserve sufficient
consideration. This confinement is supported by the
broad range of validity of the zero-order solution. In
fact it provides reliable results for all adaptation con-
stants sufficiently distant from the stability boundary.
Remarkably, various statements of the zero-order theory
are not confirmed by the independence theory which,
therefore, cannot claim general validity even for a van-
ishing adaptation constant. It is only under rather spe-
cial assumptions concerning the spectral distribution of
the exciting signals, that the two approaches arrive at
the same results.

In the present paper we address the zero-order the-
ory for an LMS adaptive filter of the TDL type under
excitation by stationary (input and reference) signals of
any colouring. We concentrate upon the steady state,
in which the weight coefficients remain fluctuating af-
ter completion of the adaptation phase. Thus we do
not address adaptation transients and tracking prob-
lems. Extending the general outline presented in [6]
and adopted in [1] we derive a Lyapounov equation for
the ”weight-error correlation matrix” in the frequency
and time domain, with and without using the eigen-
vectors of the input correlation matrix. Under special
conditions the equation is shown to have a closed-form
solution. Additional attention is paid to the external ef-
fects of the weight fluctuations commonly summarized
under the name ”misadjustment”.

2 BASICDYNAMICS AND SMALL-SIGNAL
APPROXIMATION

Consider a configuration, in which an adaptive filter
tries to imitate a reference filter. The filters, both of the
TDL type, are assumed to have equal length M with a
constant M x 1 weight vector A of the reference filter
and a time-varying M x 1 weight vector w;, = h + v, of



the adaptive filter (for unequal lengths we have to write
wy, = ) + v, where 1) denotes the Wiener solution
pertinent to h). Both filters are excited by the common
7input signal” z;. The output of the reference filter is
superimposed by an external "reference signal” ny that,
after subtraction of the output signal y; of the adap-
tive filter, yields the ”error signal” eg. The input and
the reference signal xg, ni are assumed to be sample
functions of statistically independent, stationary zero-
mean random processes with unspecified colouring. If
at k& = 0 these random signals are applied to the sys-
tem and if w, # h, an adaptation process is initiated
which, in global terms, directs the weight w, towards A.
However, w, does not reach h asymptotically as a lim-
iting value, but oscillates around it with random fluc-
tuations v,. Eventually also this M x 1 ”weight error”
vector v, becomes a stationary, zero-mean random sig-
nal, whose statistics are the main subject of the present
paper. Specifically we study the M x M weight-error
correlation matrix

V= E{QkQZ}a (1)

whose diagonal elements V,,,,, denote the ”powers” of
the pertinent weight fluctuations, while the off-diagonal
elements V,,, stand for the mutual correlations. Like
any other correlation matrix, V' is symmetric (V = V?)
and positive (semi-)definite (V > 0).

For further use we define the M x 1 input vector

Ty = (l‘k,l‘k_l,...,l‘k_M+1)t (2)

made up of the scalar input signal and its (M — 1) past
values. The output signal is defined as the inner product

yk = wiay, = bz, + vjzy, (3)
while the error signal is given by
er =g+ b2y —yp = ny, — iy, (4)

Now we discuss the weight updating rule, which for the
LMS algorithm reads as

Upp1 = U + 2pepy, = vy + 2p( gy, — 22k vy ), (5)

where p i1s the adaptation constant. Further analysis is
eased by making use of the normalized signals +/2ung
and +/2uz,, which, for the sake of simplicity, are again
denoted by np and z,, respectively. The statement 7
is small”, henceforth often tacitly presupposed, 1s then
phrased as ”the power of z; is small”. (The concomi-
tant statement concerning ny is of minor importance
because of the linear dependence of v, on ng). After
normalization (5) passes into

_ t
Vg1 = U — Ly 20y + Ny (6)

This relation defines a deterministic operator (ng, ) —
(vs,) such that v, is uniquely determined by the past

values of ny and z,. Remember, however, that only the
scalar input signal z; can be freely chosen, which results
in an inherent coherence in the vector signal z;,.

With Ry = 2,2} and ik = nix, the system under
consideration belongs to a more general class governed
by the difference equation

Ypyr =V — Rpv + £ (7)

Again, we are interested in the steady state, where be-
sides Ry and [, also v, is a stationary random signal.
In conformity with our special situation, the M x 1 ex-
citation vector f 1is assumed to have zero mean, while
Ry, is a symmetric, positive (semi-)definite time-varying
M x M matrix with the mean value R = E{Ry} which,
like Ry, is positive (semi-)definite. In our special case
R means the ”input correlation matrix”.

It is important to recognize that, due to Ry > 0,
the term (—Ryvg) in (7) represents a time-dependent
system damping. Remembering our aim to study the
filter behaviour for small adaptation constants, i.e. for
small input signals, we have to examine the limiting case
where this damping Ry and herewith R is small (com-
pared to the unit matrix). Then the system behaves as
an extreme low-pass filter [7] implying that the varia-
tions of v, are much slower than those contained in ik
and Rj. Consequently, the time-dependent damping Ry
in (7) can be replaced with its average R:

V1 = v — Ry + (8)

Thus for R — 0 we can solve the simple difference equa-
tion (8) with constant coefficients instead of (7). For
moderate values of R (i.e. for moderate values of the
adaptation constant p) this zero-order solution approx-
imately solves (7).

From (8) it can be concluded that in the limiting case
of a vanishing R the required M x M weight-error corre-
lation matrix V' as given by (1) satisfies the Lyapounov
equation

RV+VR=PFL. (9)
Here I denotes an ”excitation matrix” defined as
F= > E{ffi_}= > E{mn_}E{z,z)_}.
l=—c0 l=—c0

(10)
Like R, it 1s symmetric, positive definite, and of Toeplitz
structure. In the next two sections proofs are provided
of (9), one in the frequency domain using the eigenvec-
tors of R, another in the time domain without using the
eigenvector representation.

3 FREQUENCY-DOMAIN TREATMENT

The signal transformation f, — v, pertinent to (8) can
be elegantly formulated in the frequency domain. De-
noting frequency functions by capitals with a tilde, we
find for the associated matrix system function

H(z)=((z=DI+R)"% (11)



Let F(Q), ‘N/(Q) denote the matrix power spectral densi-
ties of f, and v, (i.e. the Fourier transforms of the auto-

correlations F() = E{ikiz_l} and VI = Byl 1),
then we have the ”local” spectral relationship

V(Q) = A EQ)EH (9. (12)

Notice that, in contrast with the familiar scalar case, the
factors in (12) do not commute, implying that the cen-
tral factor cannot be extracted from the product. The
required weight-error correlation matrix V' is found by
averaging the pertinent spectrum over all frequencies:

= % ’ V(Q)dSQ. (13)

v
Now let ¢, and A; denote the orthonormal eigenvectors
and positive eigenvalues of the input correlation matrix
R, then we can formulate H, F', V in normal coordi-
nates, i.e. with respect to the basis of eigenvectors:

= ZZiﬁJiﬁ Hyj=qHe;,  (14)
J
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with similar expressions for I and V. A special result is
found for the system matrix H, where the representation
(14) becomes diagonal: f]ij = 0 for ¢ # j, in accordance
with (11). The diagonal elements for z = ¢/ read as

Hi = (% =14 \)7h (15)

Next we rewrite the basic relation (12) in nogmal coor-
dinates, observing the low-pass character of Hy;:

Vii(Q) = Hi(e/F(Q)H (')
Performing the Q-integration (13) we obtain

Fy0)  Fiy(o)

VZ”:/\Z'—I—/\]'—/\Z'/\]' N/\Z'—I—/\j’

valid for small A’s, i.e. for small input signals. Rewriting
this "local” proportionality between V;; and F;;(0) as

(\i + Aj)Vij = F5(0) (17)

we recognize (9) in normal-coordinate formulation. In-
deed, (17) follows from (9) through simultaneous pre-
and post-multiplication by gﬁ and 4; recognizing that #

in (10) represents the low-frequency value F(O) of the
power spectrum of ik The higher frequencies are lost
due to the low-pass character of the adaptive system.

4 TIME-DOMAIN TREATMENT

The solution of (8) has the convolutional form

m=—0oQ

with Hjy the M x M matrix impulse response of the
system. This is determined from (8) as

Hy = w1 (I — R = Hj, (19)

where uy, denotes the unit step (ux=1 for & > 0 and zero
elsewhere).

In our context we are interested in the transmission
of stationary stochastic signals, particularly in terms
of their autocorrelations F() = E{fkfz_l}, v =

F{v,vt _,}. We find a linear relationship of the form

v =SSN m, rmug (20)

m

from which we obtain the desired ” weight-error correla-
tion matrix” V:

V=vO=3"N"nm,r"ul . (21)

Next we decompose (21) in the form

v=>"1"; 10 =N"H,F™MH . (22)
n m

In an attempt to sum up the second series (22) we en-
counter the difficulty that the matrices H,, and F() in
general do not commute, thus prohibiting the extraction
of F(") from the sum. In fact (22) does not admit an
explicit summation. Instead we show that in the small-
signal approximation 7(") satisfies a Lyapounov equa-
tion. To this end we write (19) in the recursive form
(where the Dirac function d,, equals unity for m = 0
and zero elsewhere)

Hyp1 = (I — R)Hp + 6l = Hp(I — R) + 1. (23)
This enables us to rewrite (22) as

70 = N H FHL, = > Hpp FUHL L

= D [(I=R)Hp+ 6 IFM[(I=R)H., y+ Smnl]

= (I-RT"™(I -R)+F"(I-RH, +
(I — R)YH_,F™ 44,F). (24)

For small input signals, i.e. for a small R, we can ne-
glect the terms RT(" R, —F(”)RHTZ, —RH_,F and
approximate F(”)Hfl and H_,F™ by u,_1F" and
u1_n "), respectively. Thus we arrive at the Lya-
pounov equation

RTW 4 TR = ), (25)

Finally, summing up (25) over all n and using (22) and
(10), we find (9). Notice that the above derivation does
not explicitly use the eigenvector representation of R.
Due to the statistical independence of n; and z; the
autocorrelation of ik equals the product of those of nj



and z,. With Parseval’s theorem the sum over all F(),
as required in (10), equals the average of the product
of the pertinent power spectra. This implies that all
frequencies contained in ny and z, equally contribute
to the right-hand term of (10) representing the zero-
frequency spectral component of ik

5 EXPLICITLY SOLVABLE CASES

There are only few cases, which admit a closed-form
solution of (9). One occurs for a white process ny, where
the sum (10) consists of the single term F{n7}R which
leads to

V =1iE{ni}I (26)

=3

Thus the weight fluctuations are uncorrelated and have
equal power %E{ni} This result is also predicted by
the independence assumption [1]. Notice that the power
has a finite limit for R — 0, i.e. for a vanishing input
signal f, in (8). This can be explained by an amplifying
property of the low-pass system, which, due to (11), has
a high ”resonance peak” at z=1: H(1) = R™'.

Another explicitly solvable case is found for a white
zg. Then R = F{z?}] and F and V become Toeplitz
matrices with F,,, = E{xz}E{nknk_(m_n)} and V,,,, =
%E{nknk_(m_n)}. Like the former situation all weight
fluctuations have the same power +E{n}}, while the
correlation between two weight fluctuations equals the
autocorrelation of ng with the time shift replaced with
the spatial distance between the points under consider-
ation. In this sense the autocorrelation of ny is mapped
into a spatial distribution on the delay line.

Returning to the more general case we observe that
the correlation matrices R, F', and V are symmetric
and positive definite. With regard to V, it is a basic
property of the Lyapounov equation that it transfers
these properties from the given matrices R, F' to the
unknown V. However, this is not true for the Toeplitz
property. It is only for very large filter lengths M that
V' becomes almost Toeplitz (i.e. except for the vicinity
of the matrix border). A general consequence of the
Toeplitz property of R, F' is a double symmetry in V
with respect to the main and the side diagonal [7].

6 MISADJUSTMENT

We close with a brief discussion of the external effects of
the fluctuating filter weights usually designated as ”mis-
adjustment”. According to [8] this should not be based
upon the excess mean-squared error, but be directly re-
lated to the partial output signal owing to the weight
fluctuations:

E{lvi2,]*}
E{nz}

misadjustment &

(27)

where the numerator can be rewritten as

E{vz v} & B{v, B{z,a) v, } = E{v}, R, }. (28)

Here we have exploited the fact that z, and v, fluctuate
on extremely different time scales. During some time
interval of length N, v, can be considered as constant,
whereas N is sufficient to evaluate the time average with
respect to z, (which equals the ensemble average, due to
ergodicity). This leads to a local E{[v}z,]*} pertinent
to the ”frozen” v,. In a second averaging operation with
respect to v, the final E{[v}x,]?} is determined. This
runs as follows. With the identities

v Ry = tr(Rygvh) = tr(v R) = gtr(Ruvk+v, vk R)
and using (9) we find

E{[vz]*}

= u(RV+VR) =33 wFY=33 B{f[, }
i l

= 1Y E{nnp_ i} E{zhz, i}
l

= %MZE{nknk_l}E{l‘kl‘k_l},
{

which (formulated in normalized terms) leads to

%M Zl E{nknk_l}E{xkxk_l}
E{n;}
Observe that the sum 1n the numerator can be rewritten

as the average over the spectra of the input and the
reference signal [8].

. (29)

misadjustment =
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