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ABSTRACT

In this paper, we propose a two - dimensional (2-D)
least-squares lattice (LSL) algorithm for the general case
of the autoregressive {AR) model with an asyminetric
half-plane {AHP) coefficient support. The resulting LSL
algorithm gives both order and space recursions for the
2-D deterministic normal equation. The size and shape
of the coeflicient support region of the proposed lattice
filter can be choesen arbitrarily. Although the 2-D signals
of the model support are ordered into a one-dimensional
{1-D) array, the ordering of the support signal can be
assigned arbitrarily. Finally, computer simulation for
modeling a texture image is demonstrated to confirm
the proposed model gives rapid convergence.

1 INTRODUCTION

In recent years, the development of two - dimensional
(2-D) adaptive algorithin has rapidly expanded into a
varicty of fields such as communication, radar, image
restoration and spectral estimation.

On the other hand, one-dimensional {1-D) adaptive
lattice filter has been successfully used in a wide range
signal processing applications, involving unknown or
non-stationary data. Especially, 1-D least-squares lat-
tice (LSL} algorithm based on least-squares concept pro-
vides rapid convergence not obtainable with conven-
tional lattice and transversal filters based on statistical
concept.

Motivated by the success of 1-D adaptive lattice fil-
ter, there have been some reserch effort directed to the
development of 2-D adaptive lathice filters [1)-{5]). These
studies show that 2-D adaptive lattice filter has rapid
convergence property and is useful in many applications
such as image restoration and noise cancellation. Most
of these lattice filters are formulated based on statisti-
cal concept. The development of adaptive lattice algo-
rithms based on least-squares scheme for 2-D problems
has been much slower than their development for 1-D
problems. Very few lattice filter model for least-squares
algorithm have been discussed [2].

In this paper, we propose a 2-D LSL algorithm based
on least-squares concept for the autoregressive (AR)
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model. The proposed LSL algorithm provides a least-
squares sclution for the 2-D deterministic normal cqua-
tion, The size and shape of the coefficient support region
of the proposed lattice filter can be chosen arbitrarily.
This is the validity of the propoesed LSL algorithm, Most
of previous 2-D lattice flter reported in the references
(1)-{4] have been proposed for a quarter-plane (QP) co-
efficient support. Although the 2-D signals of the model
support are ordered into a one-dimensional (1-D) array,
the ordering of the support signal can be assigned arbi-
trarily.

Finally, computer simulation for modeling a texture
image is carried out to confirm the proposed method
gives rapid convergence.

2 2-D LEAST SQUARES LATTICE (LSL) AL-
GORITHM

2.1 Some Preliminaries

For a stationary random field model, an asymnetric
haif-plane {AHP) support linear prediction of a sam-
ple y(Z,j) is obtained by the linear combination of its
support signals:

Qulij) = {yli — s i - t)|(st) € Sy} (1)

where Sy is a 2-D index set which is & subset of the
following AHP 2-D index sct:

S={(s,t)[(s>0,t >0} or (s > 1,4 < }} (2)

The subscript M of 8y denotes the number of its ol
ement. In this case, a one-to-one mapping I betweon
2-D index set Sy and an integer set M={1,2, -- -, M}
arc defined.

I:Sy—M (3)

For a specific I, we introduce the notation
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where I is the inverse mapping of I.

Using the notation {{¢,7) — p), the forward and back-
ward prediction errors with an AHP support are defined
by
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where of o, (8) and b oy (8) (8 = 1,---,¢) are the
2-D forward and backward prediction coefficients at the
point ((m,n) — p), respectively.

Now, the prediction error coefficients are determined
to minimize the following sum of weighted prediction
error squares:
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where A (0 € A € 1) is the exponential weighting factor,
The s(i, 7) is the total number of 2-D input data used
by the point (Z,), and S = s{m,n). In the reeursion of
2-I} input data, raster scan is taken,

f {6) and {6) are substituted into {10) and (11),
respectively, the stationary condition of Ag(m,n) and
B;(m:n) witl respect to the prediction coefficient yields
the following 2-D deterministic normal equation:
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of the forward and backward prediction errors, respec-
tively, and o is the zero column vector.

2.2 Order Recursions

2.2.1 Recursion for prediclion errors

In this section, order recursion for the prediction errors
is derived. At first, order recursion for prediction coeffi-

cients is discussed. Prediction coefficient vectors a.p(m )
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(b} Overall structure.
Fig. 1 2-D lattice structure.

and b7

o(rm.n) of arder ¢ can be updated from the o’

(m n)
and bq+1(m m Of order ¢ — 1. The update equation is
defined by

1 (} .
1 K’
- g—1 g{m.n)
- a:(r:l ) bp-}-l(vn,n} |: Kf e mln l (14)
1 Palrn,n)
where Kp ) and K7 Pl A€ the so-called reflec-

tion cocflicients at the pomt ((mn,n) — p).
Substitution of (14) into (12) yields the reflection co-
cfficients such that

f — g1 ¢-1
Kp,q{ mg) Ap{m 'n)/Bp-!-l (rre,m} (15)
— =1 g-1
K;Q("‘,“) = =4 pim,n) Ap{m,n] (16)
and minimum mean square errors
A9 — ¢-1 f ¢-1
Ap(m,n) - Ap [rra,me} + Kp,q(m n)& (m,n) (17)
i — g—
Bp(muﬂ-) - B +l{ru ) + K phglm,m} Ap(m, n) (18)
where
1 1]
¢-1 -1 g g1
(m,n} ap(m,n) Rp[m,n) bp+1(m,n] . (19)
1
Furthermore, premultiplication of Y:[m ny by the

transpose of both side of (14) yields the recurrence fo-
mula of the forward and backward prediction errors:
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with the initial conditions as

f?(m,n) -1 = TP['HI“H}—I]) = y({?'ﬂ., ’ﬂ.} - p) {21)
y{m,n) —0) = y(m,n). (22)

The proposed 2-D lattice structure generated by (20) is
illustrated in Fig. 1.

2.2.2 Recursion for conversion factor

To complete order recursion required for the LSL algo-
rithin, we need another recurston for the so-called con-
version factor. The gain vector is defined by

-1 1
g:(m ﬂ) Rg(!’; ﬂ-]] Y;{m n) (23)

It can be viewed as the solution of the 2-D deterministic
normal equation for a special desired response such as

ai)-n={ g Chnlmm

0 Otherwise.

The conversion factor, defined by

Tyra—1

has important property that is bounded within zero and
one;
q
0 S F}(p(m,u} S 1. (25)

When the filter operates for a stationary input signal,
fy;(m ) rapidly increases to 1. For a non-stationary in-
put signal, ’yg(mm) rapidly decreases to zero.

Gu the other hand, the inverse of the correlation ma-
trix 1t p(m,n) Ca0 be expressed as follows:
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Using (23) and (26}, the order recursion of the gain vec-
tar gg(m.n) can be obtained by
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2.3 Space Recursion

In this section, space recursion for the cross-corrclation
function Aq_nl! ny 18 derived. From (13}, the correlation
L}

matrix RY
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where ! (m ") 1s the so-called forward a priori prediction
error defined by
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Between np(m ) and f("'(m.n]_p), we have the relationship
as follows:
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The correction term f(ml,,) ) E”(n:n] —p_p) in (33) is

amplified by the reciprocal of the conversion factor
7:;11("‘,‘1). This parameter enables the proposed LSL
algorithm to adapt rapidly to sudden changes in the 2-
D input data,

3 EXAMPLE

Computer simulation for modeling a texture image
(100%100), shown in Fig. 2, is carried out to confirm
the proposed method has superior convergence over the
LMS algorithm [6] and the conventivual LMS lattice al-
gorithm [5]). The recursion of the algorithm usc a raster
scan type of 2-D input data. Each model has AHD co-
efficient support with 12 stages (M = 12).

To measure the performance of the adaptive algo-
rithm, we use the mean square error

MSE, = E[{f{%{m‘n)—g)}z] (34)

and the mean square deviation

MSD; = E{(aM_T{aM

a‘ot’m,n))] (35)

ulTre, n)
where the subscript k is the mumber of iterations given
by 100{m—1)+n. Furthermore, to examine the behavior
of the conversion factor, we use the average of 7;{(,“ )

(q=1,---,M]:

M
Y = Z Tg{m,n]' (36)
§=1

Figs. 3 and 4 show MSE; and MSD; versus the
number of iterations, respectively. Each curve is ob-
tained by averaging 20 independent texture images. The
step-size parameters of the LMS algorithm and the con-
ventional LMS lattice algorithm are 1.0 x 107¢ and



Fig. 2 Texture image.

1.0 x 107°, respectively. The weighting factor A of the
proposed algorithin is 0.99. Figs. 3 and 4 show that the
proposed method has superior convergence property.

Fig. 5 depicts the trajectory of v; obtained by mod-
cling one of the samples. The value of 74 is small dur-
ing the initialization period. Thereafter, v rapidly in-
creases to 1, and it decreases rapidly at the boundary
portion of two textures in the image.

4 CONCLUSION

In this paper, 2-D LSL algorithm for the gencral casc
of the AR modcl with an AHP support is presented. It
is shown that the proposed model has superior conver-
gence property through computer simulation for model-
ing a texture image.
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