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ABSTRACT

Timing adjustment in digital receivers is usually per-
formed by an interpolator {ollowing the matched filter.
With a root-cosine pulse with rolloff 0.5, iinear interpo-
lation with 2 samples per symbol leads to SNR loss. In
this paper, it is shown that the receiver structure can be
simplified, and that the SNR-loss can be reduced. This
is achieved by the construction of novel strictly time-
limited root-KNyquist pulses with good spectral proper-
ties. Using these pulses, combination of matched fil-
ter and interpolator for timing adjustment in digital
receivers with negligible SNR-loss up to a BER of 107°
for BPSK is possible at two samples per symhol.

1 INTRODUCTION

A fully digital receiver samples the received signal at
instants that are not syachrontsed with the transmit-
ter clock. The ideal Maximum-Likelihood recciver has
1o sample the matched filtered data pulse at its exact
maximum, assuming that a root-Nyquist pulse is used
for transmission. Therefore, the timing error between
transmitter and receiver has to be corrected to avoid
SNR loss. Solutions of this problem have been stud-
ied in [2;3:4] for different cases. The receiver considered
there consists, after the sampling unit at rate 1/T, of
a digital matched filter, an interpolator to correct the
tune-shift, aud the decision unit working at symbol rate
1/T,. sce Fig.1l. Perfect tuming estirtation is assumed
there, and throughout this paper, too. For BPSK. the
typical case of a root-cosine pulse with rolloff 0.5 and
sampling rate of two times the symbol rate, linear inter-
polation (two filter coefficients) leads to an SNR-loss off
0.2 dB at a BER. (Bit-Error-Rate) of 1072 and 0.7 dB
at a BER of 107%. sce [2]. Higher order interpolation
or a higher sampling rate lead to betier perforinance at
expense of higher computation load.

2 THE IDEAL MATCHED FILTER/-IN-
TERPOLATOR

The investigations described in the paper start from the
idea that the interpolalor can be incorporated in the

matched filter, by using a delayed replica: 1deally. the
by 7 delayed and sampled with rate 1/T rool-Nyquist
pulse rp(rT ~ 7) 15 convolved with its {lme-reversed
version and computed at symbol rate 1/7;, leading to
the result

z#(nl,) =T Z rp(dT + rirpin e + 4T + 1) (1)
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Witk the the symbol o-—e denoting as usual the
Fourier-Transformn
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5(2) o—e S{f) = / s(t)e 1?3t (2)
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the Translorm of equation {1) is obtained with the help

of Poisson’s summation formula (see [5])

X(f)=RP() Y RPCR- DR (3)
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It is naw ¢lear that for bandlimited pulses sampled at
the Nyquisl rate and infinite summation, in (3), only
the term for 1 = 0 remains, that is

X{f) = RPUf)RP(—F) := P(f). (4)

Henee this filtering operation exactly cancels the delay
r. and x(nT}) = p(nd;), where p{nT,) are the sam-
ples of the underlying Nyquist pulse. No intersymbol
interferentce occurs therefore and hence, no additionat
interpolator is necessary, see Fig, 2.

However, the same problems as for interpolation de-
scribed in [2,3.4] arise:

¢ Exactly bandlimited pulses are not realizable. thus
{4} 1s an approximation

s The infinite summation 1n the discrete correlation
{1) is not realizable

Therefore, errors arise, leading to SNR loss. In order to
keep these errors small, the following new procedure 1s
chosen.



3 CONSTRUCTION OF STRICTLY TIME-
LIMITED ROOT-NYQUIST PULSES

Strictly time-limited Nyquist-pulses, denoted by pu,
and corresponding root-Nyquist pulses rps, are now
constructed. In this way, the matched filter has finite
length, and the sum {1) needs only a finite number of
terms. The spectrum of these pulses decays rapidly in
order to avoid high sampling rates. This twofold per-
formance is obtained by chosing the Nyquist pulses as a
weighted finite sum of time-shifted B-Splines. B-Splines
of order n, denoted B,{z) are well known [7] and are
piccewise polynommal functions.

With the usual notation sine(r) = sin(wz)/(mr) and
the relation [7]

By (x) o—e sinc™(f) , (9)
we look for Nyquist pulses puy,(x) of the form

N

pim(d) = Y azmd Bom(z + £/2) (6)
k=0
+Bom (2 — £/2)} (7)

N
o—e sinc™(f) Z 2agm g cos(Thkf) . (8)
k=0
Note that the splines are shifted by multiples of 1/2.
This is importiant, hecause if only integer shifts are al-
lowed in the sum (8), it turns out that no solution exists,
sce [7]. With this special settimg {or pam(x) we look for
a finite coefficient sequence au,, ; such that pog,(2) sat-
isfies the well-known Nyquist-condition for T = 1

k
T _({)K - '71171 — =
Pam (kTy) {)o_.T Z P. 1;]

k=—c

= 1. (9)

Inserting Puy (f) in this condition at the first step it
follows

sm n}) M N
(10)

Using trigonometric identities, this can be fransformed
in

N . (_l)kn
1=12 Qom.  cos{ Tk ) sin x )M (-l
kZ:D .k ( H_Z_:‘v (Tr(f ~ ”

(l])

The key poiul now is that the expression
qin(—,-f)zM i (—l)"" .
| : —— (w(f — n))2M (12)

is a trigonometric polynonual of order 2M. This follows
from the relations (see[1])

{_l)f! 1 )
2 (7(f—n)) _ sin(f) (13)

ft=—

and

1 _ cos(wf)
Y =) = sata) ()

by differentiation. Now, again using trigonometric iden-
tities, the right side of (11) can be manipulated into a
trigonometric polynomial Ti(f). whose coeflicients are
linear combinaticns of the agy, ;. Since all coefficients
of Ti{ f} except the frst must vanish, a linear system of
equations can thus be extracted and solved. This gives
the coefficients wap, ¢ of a Nyquist pulse. QI course,
symbolic mathematics sofltware, like Maple. 1s of great
help for this calculations.

The corresponding root-Nyquist pulse 1s then bhe
found in the Fourier domain by taking the square-root. of
sine?(f) and performing spectral factorization of the
trigonometric polynomial 3 @ ¢ cos{mk f) in a causal
and an anticausal component, by collecting the zeros of
the polynomial inside and outside the unit circle. De-
noting the coefficients of the causal root-polynomials by
bm k. the resulting root-Nyquist pulse has the form

N2t
rprm(2) = Y bma{Bm(z—k/2)} (1)
k=0
Nf241
o—s  sinc™(f) > Do cos(zkf)(16)
k=0

and 15 thus again a linear combination of shifted B-
splines, ensuring easy cowmputation.

The sine™(f}-Term in EFapm(f) assures fast spectral
decay of these pulses. It can be shown by methods
similar 1o those in [6] that the RMS-difference between
rinT,) and pem(nT,) using (1} behaves as 1™, which
means thal small errors are obtained by higher sam-
pling rates or increased m, which means longer pulse
duration.

Two remnarks are to be made at this point. In the
first place, it can be claimed that root-Nyquist pulses of
the type considered hete exist for every order m. How-
ever, this has not yet been proven. In the second place,
a closed analytical formula for the cocfficients of the
Nyquist. pulses would be very desirable. On the other
side, for use in digital transmission, only pulses with a
moderaie number of cocflicients are of real intlerest.

As represenlative examples, the first three root-
Nyvquist pulses rpa(2), rpa({x) and rpg(r) are shown to-
gether with the corresponding Nyquist-pulses and their
Fourier- Transform in Fig. 3 for normalized symbol rate
T, = 1. The matched filter needs 3,5 aud 7 tites T/7T,
coeflicients, respectively. The coefficients are given in
the following table:
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Figure 2: Combined Matched Filter/Interpolator
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Figure 3: Some Root-Nyquist and Nyquist pulses and Fourier-Transforms



Coeff/Pulse | rp4 TPs rps

bm,0 1.65678 | 2.5441 | 3.9117
b1 -0.7383 | -2.2258 | -5.1001
b2 0.1005 | 0.7975 | 3.0013
b3 -0.1186 | -0.9477
bim .4 0.0038 | 0.1532
ben,s -0.0098

4 SIMULATION RESULTS

Simulation results have been obtained for BPSIK, as-
snming additive white gaussian noise and an ideal dis-
tottionless channel, except for phase rotation and time
delay. The BER has been obtained as an average BER,
assuming that the time-shift 7 is an identically dis-
tributed random variable. The flexible simulation pro-
gram implements a digital receiver with matched filter,
followed by an interpolator, as well a receiver with com-
bined matched filter /interpelator, followed by a decision
unit, as in Figures 1 and 2 . Various pulse types can be
chosen for transmission. In Figure 4, the average BER
for rpd and rp6 at sampling rate twice the symbol rate
is shown together with the analytical results for BPSK.
At sampling rate only twice the symbeol rate, rpy gives
approximately the same performance as a root-cosine
pulse with linear interpolator from [2]. Up to a BER
of 1075, for rpg and rpg no SNR-loss is observed. rps
needs less filter coefficients and is therefore superior up
to these BERs. For higher BER, analytical and semi-
analytical methods are under investigation in order to
compute the SNR-loss, because computation time and
roundoft-errors make simulation difficult for very high
BER.

The conclusion is that special root-Nyquist pulses
have been found that allow to incorporate the inter-
polator in the matched filter for digital ML-receivers,
and that they have excellent performance at sampling
rates of only twice the symbol rate.
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Figure 4: Average BER analytical/simulated



