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ABSTRACT

The optimal Bayesian Classifier is often difficult to
implement because of its complexity. For Gaussian
parameters, the Bayes decision rule reduces to a
simple centroid distance rule. However, the cen-
troid distance rule fails for non-Gaussian parame-
ters with non-convex probability density functions
(p.d.f.). This paper studies some statistical prop-
erties of Line Spectrum Pairs (LSP). These statis-
tical properties can be used to study the convexity
of LSP point clusters in pattern recognition appli-
cations.

1 INTRODUCTION

A major problem in pattern recognition is the de-
termination of the “optimal” classification rule for a
given parameter vector. The solution to this prob-
lem is given by the Bayes Classifier when the pa-
rameter vector statistics are known. However, im-
plementation of the Bayes classifier is often difficult
because of its complexity. The Bayes decision rule
reduces to a centroid distance rule for Gaussian pa-
rameter vectors, leading to a simple classifier. For
non-Gaussian parameter vectors with non-convex
probability density functions (p.d.f.), surprising re-
sults can be obtained with the centroid distance
rule [6]. A statistical analysis of the reflection and
cepstrum coefficients has shown that their p.d.f.
can be non-convex. Thus, the centroid distance
rule is not an effective classifier in these cases[6].
This paper studies some of the statistical proper-
ties of Line Spectrum Pairs (LSP) coefficients. LSP
coefficients have been effectively used for quantiza-
tion and coding [4],[5]. However, to our knowledge,
there are no theoretical studies of these parame-
ters when used for pattern recognition. LSP coeffi-
cients are usually computed from the Linear Predic-
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tion Coefficients (LPC). There are, at least, three
applications for which the LPC parameter vector

(AR parameter vector) statistics are assumed to
be known|6]:

e Pattern recognition-LPC parameters are
random, and their statistics (characterizing
the intra-class scattering) are usually assumed
to be known (generally Gaussian) [1].

e Estimation theory-LPC parameters are de-
terministic and have to be estimated. Most
commonly used LPC parameter estimators can
be assumed Gaussian (according to the Mann
and Wald theorem) when these parameters are
estimated for sufficiently large data records
[2]. This Gaussian assumption is unrealis-
tic when AR parameters are estimated with
the autocorrelation method. It is well-known
that the autocorrelation method yields estima-
tors which belong to a bounded stability do-
main. The Gaussian assumption implies that
the distribution of the LPC parameter vector,
although being bounded, is very close to the
Gaussian distribution.

e Theory of random coefficient AR
models-many studies have been carried out
under the Gaussian assumption [3].

In what follows, the LPC parameter vector of a
nth order AR process will be modelled as a Gaus-
sian random variable, a, with mean m, and covari-
ance matrix X,. The first part of the paper derives
a recursive procedure for obtaining the p.d.f. of
LSP coefficients from the p.d.f. of the AR parame-
ter vector. The second part of the paper uses this
p.d.f. to determine the shape of point clusters in
the LSP coefficient representation space.



2 LSP COEFFICIENTS

For a given nth order minimum phase LPC polyno-
n .

mial A, (z) = 14+ > a;27", two LSP polynomials
i=1

denoted by P, (z) and @, (z) can be constructed

by setting the (n + 1) reflection coefficient (par-
cor coefficient) ky 1 to +1 or —1:

Py (2) = Ap (2) — 2~ (D 4, (zfl) (1)

Qn(2)=An(z) +2 04, (=71)  (2)

The conditions k,41 = +1 and k,41 = —1 corre-
spond to complete closure and complete opening of

the glottis in the acoustic tube model, respectively.
Let:

n+1 n+1

Pu(2) =) piz ", Qn(2) =) @z " (3)
i=0 i=0

with po = 1,pp41 = —1 and g = 1,¢p41 = +1.
With these conditions, the coefficients of the LSP
polynomials P, (z) and @), (z) are linked to the LPC
parameters by the following relations:

ie{l,.,n}  (4)

ie{l,..,n}  (5)

For n even (the cases of n odd and n even only
differ in some details), the LSP polynomials can be
expressed as:

P, (z)= (1 - zfl> H (1 — 2z Leosw; + 272>

Pi = Q; — Ap41—4

QG = G; + Q14

i=2,4,...,n ©
6
Qn(2) = (1 + zfl> H (1 — 22 L cosw; + 272>
i=1,3,.n—1

7)
The parameters {w;};,_; _, are the LSP parame-
ters. For a stable LPC polynomial A,, (z), the LSP
polynomials (6) and (7) have very interesting prop-
erties for quantization and coding [4][5]:

e all zeros of P, (z) and @, (z) alternate with
each other on the unit circle.

e the LSP parameters {w;} satisfy the “ordering
property”:

D<w <wy <. <wp1 <wp <7 (8)

3 LSP COEFFICIENT P.D.F.

This part presents a recursive method for determin-
ing the p.d.f. of LSP coefficients as a function of the
p.d.f. of the LPC parameter vector a = [ay, ..., an|".

n—1 .
Define two polynomials H,, o (z) =Y, h;z * and
i=0

n—1 .
Ky, 9(z) =) k;z~" such that:
i=0
P, (z)=Hp, 2(2) (1 — 2z L cosw, + 272> (9)
Qn (2) = K2 (2) (1 — 22 ' coswy,_1 + 272>
(10)

It can then be shown that the polynomial coeffi-
cients, for i = 1,...,n/2, satisfy:

p; = h; —2h; 1 coswy, + h;_o (11)

q; = k; — 2k;_1coswp 1+ kio (12)
with h() = k?() = 17h,1 = k‘,l = pri = G; — Qp41—4
and ¢; = a; + ap41-;. These relations allow the
determination of the p.d.f. of the vector VI , =
[a1y ooy Gp—9,Wn—1,wp] as a function of the p.d.f.
of the LPC parameter vector a = [aq,...,a,])" =

V.. In a similar way, the p.d.f. of the vector
Voeg = [al,...,an,4,wn,3,wn,2,wn,1,wn]t can be
determined as a function of the p.d.f. of the vec-
tor V,,_9. With p/2 iterations (assuming the LPC
parameter vector p.d.f. is known), the LSP vec-
tor p.d.f. can be computed (see Appendix for the
example of an order 2 AR process). For simplic-
ity, the study is restricted to Gaussian LPC pa-
rameters. However, other cases could be studied
similarly. Consider the case of a 2nd order Gaus-
sian AR parameter vector, with two conjugate poles
p1 = pel¥ and py = pe /¥ . The mean and covari-
ance matrix of this random vector are :

- < _QPP‘;OS‘P ) (13)

Yo =02M (14)

M is a unit norm matrix and o? characterizes the
intra-class scattering. Simulations are performed
1 09
09 1
Fig. 1. shows a comparison between the theoreti-
cal and estimated LSP parameter p.d.f. with 95%
confidence intervals. The theoretical p.d.f. and
the histograms of the LSP parameters are in good
agreement.

with p = 0.8, = % and 3, = 102
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(b) coefficient wy.

Fig. 1. Theoretical and estimated LSP parameter
p.d.f. with 95% confidence intervals.

4 LSP POINT CLUSTERS

The last part of the paper studies the convexity of
the point clusters in the LSP representation space.
When classifying using the centroid distance rule,
it is well-known that surprising results can be ob-
tained with parameters whose p.d.f. is not convex.
In Fig. 2, all points belonging to the first class
(highlighted with a star) will be mis-classified with
the centroid distance rule. The convexity or non-
convexity of the LSP parameter p.d.f. can be stud-
ied using the results of the previous section. Figs.
3 (a) and (b) show the 3D p.d.f. of the previous or-
der 2 LSP vector and the corresponding level lines.
The LSP parameter vector p.d.f. is convex, yield-
ing a case for which the centroid distance rule can
be used. A theoretical proof of this convexity prop-
erty cannot be easily given for any order. However,
numerous simulations have been performed which
always confirm this property.

Figure 1: Fig. 2. Classification Model
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(b) 3D p.d.f.

Fig 3. Level lines and 3D plot of the LSP
coefficient p.d.f.

5 CONCLUSION

The first part of the paper presented a recursive
method for determining the LSP coefficient vec-
tor p.d.f. from the LPC vector p.d.f. The second
part of the paper showed that the LSP coefficient
p.d.f. is shown to be convex, yielding a case for
which the centroid distance classifier can be imple-
mented. This study shows that LSP coefficients



are well suited for classification, contrary to reflec-
tion and cepstrum coefficients [6]. It also allows us
to explain some good results obtained with these
coefficients in vector quantization.

6 Appendix A : LSP coefficient p.d.f. for
order 2

This appendix gives the example of the computa-
tion of the LSP coefficient p.d.f. as a function of
the p.d.f. of an order 2 LPC parameter vector. The
two LSP coefficients are linked to LPC parameters
by the following relations:

1

coswy = 5 (ag —ay — 1) (15)
1
coswy = 5 (1—ay —a9) (16)
which lead to:
a1 = —coswy — coswy = g1 (w) (17)
ag =1 —coswy + coswy = go (w) (18)

with w = (w1,ws)’. Bq. (15) and (16) show that
the LSP vector w is real if the vector a belongs to
the stability domain D, of an order 2 AR process.
The jacobian matrix corresponding to the transfor-
mation from a = (a1, as)’ to w is:

J = sin wy sin we (19)

The p.d.f. of a Gaussian vector with mean m and
covariance matrix X is:

f(x)zmexpw;m) zeR? (20)

where ) (x;m) is the quadratic form:
1
Q (z3m) = —3 (—m)'S " (z—m)  (21)
To insure the stability of the LPC parameter vector

a, it will be assumed that the distribution of a is a
truncated Gaussian distribution:

alp(a) 2
a) = ——=e€Xx a; Mg a € R* (22
g(a) oot pPQ ( ) (22)
with:
Ip(a) =1 if a€ D,
Ip(a)=0 if ad¢ D,
and:

= [, [ @) de

The p.df. of the LSP coefficient vector w =

(wy,ws)" can then be determined:

f(w)Z%eXpQ(g(w))IA(w) weR?
(23)

with g (w) = [g1 () , g2 ()]" and:

Iaw) = 1 if
In(w) = 0 else
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