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ABSTRACT

We present a double-parameter CFAR with very reasonable
losses and low computational complexity. Its basic
architecture has been conceived from tail extrapolation theory.
The detector uses a detection thresheld, set from the measured
PFA which is obtained with an auxiliary threshold
(pseudothreshold), lower than the final detection threshold.

Starting from the basic scheme, a CFAR detector for
Weibull clutter has been designed; both, the pseudothreshold
control mechanism and the correction of the basic
extrapolation equation are described.

1 INTRODUCTION

In multiple detection problems (images, SAR, radar, sonar,...)
we are faced with the problem of extracting targets (objects,
planes,...) immersed in a pertorbation background which can be
approximated by a statistical. two-parameter (shape and scale)
medel.

The design of CFAR detectors for such a class of problems
has traditionally relied [1]J[2] on estimating the model
parameters from samples in a reference window centered on the
cell under test. The detection threshold can be then computed
from the model and the estimated parameters so that the syslem
exhibits the CFAR property.

There are two problems that have hindered practical
implementations of the above mentioned detection systems: 1)
The great number of reference cells required to guarantee
acceptable SNR losses (defined as the increase in received
power which is needed to yield the same PD as the ideal
detector, where the model parameters are assumed to be known).
ii} The excessive computational load associated to the
estimation of both parameters.

In this contribution, we will study the synthesis process of
a two-parameter CFAR with reasonable losses and acceptable
computational load for a rezl-time system. The detector has
been studied for Weibull background noise, although the same
system is CFAR for a wide family of two-parameter
distributions (K, Gamma, Exponential).

The contribution describes the synthesis method for a two-
parameter CFAR detector, based on tail exirapolation
techniques [4]. The proposed scheme is shown in figure 1. The
detector is based on two reference windows, one of which is
included inside the other (M<N). The first reference window is
used to estimate the mean value of the background noise
(amplitude normalization). It consists of a one-parameter
CFAR [3] with a relatively small window (M approximately
some tens) and perfectly assumable computatyinal load.

The second parameter (shape) is obtained through the
processing of a N-cell window, where N>>M. The estimation of
the shape parameter 1s related to that of the variance, and s
thus very expensive from a computational point of view
(besides, it requires a great number of samples, N). [n order to

reduce that load, we have restored tc a tail extrapolation
technique [4). It is based on the assumption that onr
background noise distribution belongs to the generalised
exponential family (two-parameter model), with normalised
mean. The shape parameter of such a distribution is estimated
by couniing the alarms at the output of an auxiliary threshold,
much lower than the detection thresheld. This scheme exhibits
a much reduced computaticnal cost than direct estimation of
variance, though N must be greater for equal performance. The
CFAR threshold is then determined from the shape parameter,
the desired PFA and an extrapolation formula.
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Fig. 1: Basic diagram of proposed CFAR detector.

A last point is that the samples in the reference window
used to estimate the shape parameter (size N) must be
homogeneouws. Our system 1s supposed to operate on regions
from a previously segmented image. Given the fact that
segmentation does noy yield perfectly homogeneous regions,
an energy normalisation is still required to dampen such
variations.

The paper begins with a brief explanation of the praposed
detector, studied assuming the ideal amplitude normalization
[5]. We expose that synthesis of a CFAR detector as the one
proposed is feasible applying the technique of tail
exirapolation. The extension of the initial synthesis method to
the whole detector is then considered. In this phase, the effect
of the amplitude normalization is included, We arrive at the
conclusion that, even in the case of small normalization
references, both the detector and the method of design are valid.



2 SYNTHESIS OF THE DOUBLE PARAMETER CFAR

First of all, we have to model the clutter using a statistical
family characterized by a two parameter probability density
function. In our case, the Weibull distribution has been chosen.
As was stated before, prior to comparison with the detection
threshold, the signal is processed by an amplitode normalizer
(we assume a linear detector). Although, in practice, the
normalization operation may change the distribution of the
input signal, when the number of cells used for estimation is
moderately large, it can be assumed that the distribution
warping is negligible for most purposes. Thus, we will assume
that the distribution at the detector input is Weibull with
normalized mean. In section 4 we will generalize the design
method for the case of non-ideal normalization. The
expressions for the density and complementary distribution
functions of the normalized Weibull random variable are [5]:

e @) e Y] o O
oedf{z(t)} e @

where ¢ is the shape parameter (related to the impulsivity of the
clutter) which will be assumed to be in the range [0.5 - 2.0]
{between highly impulsive clutter and Gaussian noise). Most
clutter types can be characierized by a shape parameter within
that interval [7].

For the Weibull distribution (1), the tail exirapolation
equation (2) can be writen [3]:

Ln{-La(P)} =c. Ln(% FGD 3)

The estimation equation {the one used io determine the
shape parameter) is obtained taking in (3) ¢ as the independent
unknown, P (estimated probability with the pseudothreshold,
PFA;) as the dependent variable and t (pseudothreshold Tg) as a
parameter. In the extrapolation equation, however, t (final
detection threshold) is taken as the independent unknown, the
shape parameter ¢ (estimated through the estimation equation)
as the dependent variable and the final PFA (P in (3)) as a
parameter.

Secondly, we will have to obtain the performance in PFA in
order to check that the detector is effectively CFAR with
respect to both parameters. The mean PFA at the output detector
could be obtained by averaging the complementary distribution
function (2) with the density function of the threshold
extrapolated by (3). Unfortunately, it is difficult 1o explicitly
obtain the probability density function of the detection
threshold t. However, it is reasonable to accept that the PFAs
with the pseudothreshold and with the detection threshold are
independent. This 1s due, in the first place, to the fact that the
extrapolation is usually made from a burst to the next one.
Under this independence assumption, the expression for the
mean of the final PFA of the detector can be shown to be
(taking nto account (3) and (2)):
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where: 1 represents the number of cells where amplitude has
exceeded the pseudothreshold, N is the number of cells in which
the estimation has been carried out, p{.) is the binomiatl
distribution and g(.) corresponds to the extrapolation function
(3). The expression (4) should be calculated numerically.

2.1 Estimation Equation

Before designing the parameters of the detector, we will carry
out a study of the solutions of equation (3). The range of the
possible roots of this equation sets some constraints on the
pseudothreshold space to achieve the desired performance: PFA
approximately constant for values of the shape parameter in
the range (0.5 - 2.0). Analyzing the equaiion (3) for ¢ we can
draw the conclusion that, for & given estimation threshold (Tg)
and an estimated PFA (PFA,), this equation can have two, one
or no solutions for ¢. Ln(PFAg) in (3) 1s a single maximum
function of ¢, which has no solutions for values of PFA. over
such valpe. At the maximum, it has one solution and under i,
there are two (as illustrated in Fig. 2).

In figure 2, the estimation equation (3) is graphically
presented (continuous lines), with the pseudothreshold (T,) as a
parameter. The valid solutions to the estimation equation
belong ta the region within the dashed lines. The region is
horizontally limited by the specified range of variation of the
shape parameter. The lower limit is given by the curve of
constant PFA which can be estimated with a given precision
with the number of available cells N. This PFA represents an
absclute limit imposed by the number of cells. Moreover, it is
the same for all shape parameters. The upper limit is specified
by the curve of the maxima of Log(PFA,) in equation (3) (with
Te as a parameler). The PFA, of the detector must be lower than
its value, to guarantee one solution for c.
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Fig. 2: Solutions to the tail extrapolation equation (T,
parameter).

From figure 2 it can be deduced that with a constant
psendathreshold it is not possible to fall within the region of
valid solutions for the whole range of shape parameters. Hence
in order for the detector to work properly, some algorithm for
pseudothresheld control must be incorporated. The selected
approach ftries to keep the PFA constant at the output of the
pseudothreshold. The following pseudothreshold updating
algorithm is used (being K an adaptation constant):

La({T.(i+1)) =Ln(T,())- K - {Ln(-Ln(P)) - Ln({-Ln(PFA,))} )

This algorithin originates from the linear relationship
between the logarithm of the threshold and the double



logarithm of the PFA, expressed by (3). This property
guarantes an oniform convergence.

2.2. Extrapolation Function

The final PFA (equation (4)) is represented in figure 3 for an
illustrative case: PFAD=10‘5, N=1000 {estimation cells). It
shows the final PFA as a function of the estimation PFA.

Log{PFA)

Log(PFAe)

Fig. 3: Mean PFA for some values of the shape parameter
(N=1000, PFAR=10-3),

The main characteristic of this curves is that the final mean
PFA does nat maich the one of design, 103, Tt can be observed
that there is a small bias, practically constant, in the range
which will be the proper one for our detecior to werk within.
Furthermore, the bias depends on the shape parameter. This
means that the detector based on the extrapolation of the
threshald by (3) is not CFAR with respect to the shape
parameter. Hence, provided we want the detector to have this
property we will need to distert the extrapolation equation (3).
With that purpose, we will substitute in (3) the term PFAD
(equivalent to P in the extrapolation step) by a function of the
auxiliary threshold:

PFAD=g( Te ) (6)

Equations (6) are calculated by an iterative numerical
procedure. The mean PFA is obtained with (4) ustng (3) without
distortion (for every shape parameter). The PFA[ is corrected
in the extrapolation equation (derived from (3)) as a function of
the resulting bias in each of the shape parameters (for the T,
corresponding to that parameter). This method converges after
a few iterations (it has been halted when the maximum bias was
lower than twice the desired PFA). By correcting the curve of
extrapolation we have reached the CFAR property with respect
to the two parameters of the distribution.

2.3 Performance Evaluation
We will evaluate the performance in probability of detection
{PD). The model of target fluctuation will be taken Gaussian or
Swerling-1, 2 [7]. The PD will be measured as a function of the
clutter shape parameter and the signal 1o clutter power ratio
(S/C). The losses in 5/C will be oblained. They are defined as
the increase of S5/C over that necessary for the optimum
detector (shape parameter assumed known) to get a certain PD
{(wsually 0.5 or 0.9).

We show, in figure 4, the results for the case: PFAD=10'5,
N=1000. The continuous line corresponds to the ideal detector

and the dashed line to the proposed CFAR. The losses for shape
parameters greater than 0.8 are under 0.9 dB (PD=0.5) .
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Fig. 4: SNR for a given PD as a function of the shape
parameter.

3. EFFECT OF THE FINITE SIZE OF THE MEAN
ESTIMATION WINDOW

An aspect to be discussed is the influence of the finite size of
the normalization window. In the previous section we have
systematically accepted thus far that the normalization {mean
estimation, Fig.1)} performed on the received data was ideal.
This allowed us to assume that the clutter had an ideally
normalized Weibull distribution and to proceed with the design
process.

Figure 5 show (for N=1000) the final true PFA when the
threshold is calculated {extrapolated assuming an deally
normalized Weibull) fram the true data {data normalized with a
sample of a given finite size M). The cases of clutter shape
factors of ¢=1.0 and ¢=2.0 have been selected because, for
them, (approximate) closed expressions are available for the
probability of false alarm at the output of the CFAR [3], [6].

It can be concluded that, for M larger than a few tens, the
difference between the actual PFA and the PFA (10} predicted
for our detector vsing the ideal normalization asssmption is not
practically noticeable. In the next section we generalize the
design process to deal with the effect of the non-ideal
normalization.
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Fig. 5: Effect of the finite size of the CFAR reference on the
expected PFA (PFAp=10"%, N=1000)



4 CORRECTION OF DESIGN PROCESS

In the former section we have checked that, for a small number
of cells in the normalization window (M), the detector that
assumes an ideal normalization suffers an increase in the PFA,
which is, in addition, variable with the shape parameter.

We commented in the introduction that, even though the
detector has been designed for Weibull clutter, the technique is
valid for a wide range of possibilities. In this section we will
adapt the method of design of the proposed CFAR detector to
the distribution at the output of the normalizer. To that end, we
simply have to substitute in equation (6) the complementary
distribution function of the Weibull random variable by that of
the output of the amplitude normalizer. The threshold is to be
determined according to the tail extrapolation technique
(equation {5)). Since the normalizer effect is to slightly
increase the tail of the distribution, the estimated shape
parameter will also be slightly larger, and will thus compensate
the increase in PFA,

The distribution function at the output of the normalizer is
difficult to obtain in a c¢losed-form expression (except in the
case c=1). Therefore, it has been obtained by means of a
semianalytical technique.

Since the expression of the distribution function of the
Weibull random variable i1s known, in order to obtain that
output it is only necessary to generate the threshold
(T*amplitude average) and to average the corresponding values
of the complementary distribution function. The number of
trials that are necessary to reach an accurate convergence has
been determined by the method in reference {2]. The resulting
distribution, tabulated as a function of ¢ and T, is entered in (6).
The design process follows identical steps as those carried out
in section 2.
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Fig. 6: Detection losses as a function of M (PD=0.5, PFA=10"%,
N=1000)

Finally, a number of experiments have been carried out for
several values of M, in which the wracking filter of the
pseudothreshold has been included, for a Swerling-1 target. The
PFA remains close to the value of design. The detection
performance has been determined through Monte Carlo
simulation. Results have been plat in figure 6 for two values of

the shape parameter | and 2, PD=0.5, PFA=10"3 and N=1000,
In this curve the detection losses are represented for several
values of M: 16, 32, 64, 128 and 256.

Along with the loss of the whole delector (continuous line),
in figure 6 we have also represented the curve (dashed line)
corresponding 1o the additive estimation of these losses. That
is, by considering that the losses of the two-parameter CFAR
are equal to the sum of those pertaining to the scheme of mean
normalization (c known) and those from the one proposed in
section 2 {mean known). The conclusion is that this approach
is accurate encugh, which supports the application ol this
method to the comparison to other two-parameter CFAR
detectors that was used in [5].

5 CONCLUSIONS

In this paper we have demonstrated that the two parameter
detector proposed in [5], which assumes a quasi-ideal amplitude
normalization, is valid when the number of reference cells in
the normalization window is small.

We have also shown that the losses of the two parameter
CFAR deitector are approximately equal to the sum of those of a
CFAR with amplitude normalization (known ¢} and those of a
CFAR with ideal normalization which estimates c. The
assumption now justified was used to compare the proposed
detector to other classical two parameter CFAR systems.
Specifically, data in figure 6 have been chosen according to the
test in reference [2]. The CFAR with maximum likelihood
estimators for a reference size of 32 cells shows losses of 3.2
and 6.8 dB, for c=1 and c=2 respectively. As can be proved, the
loss in resolution implied by the use of a detector such as the
one proposed is widely compensated by the reduction both in
losses and in computational load.
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