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ABSTRACT

In this paper non-Gaussian noise modelling is addressed.
HOS-based parametric pdf models are investigated in order
te provide realistic noise modelling bv means of casy and
quick estimation of nceded parameters.

Attention is focused on the generalized Gaussian pdf, This
model, generally depending on a rcal theoretical parameter
¢. difficult to estimate from data. is proposcd expressed in
terms of the fourth-order parameter Kurtosis 5 by
introducing the analytical relationship between ¢ and 5.
The model is compared with well-known pdfs and used in
the design of a LOD test.

1 INTRODUCTION

This work is addressed to realistic characterization of
generic background noise aimed al the optimization of
signal detection in non-Gaussian environments.

Detection is decalt with as binary hypothesis testing in the
context of statistical inference | 1]: the decision between the
two hypotheses of the presence (Hy) or the absence (Hg} of
a transmitted signal {;, i=1, .., M} is madec on the basis of
acquired observations (v, /=1, ... M} [1], the noise, {x;
i 4 ., M} is assumed additive, independent and
identically distributed {iid), stationary, unimodai, generally
non-Gaussian.

Among the main targets addressed, easy applicability o
real cases 13 focused, in terms of realistic noise modelling,
casy and realistic estimation of model parameters, and
robustngss to variable boundary conditions.

Symmetric probability density function (pdf) medels are
congidered. In order to satisfy the mentioned requirements
of easy applicability of a model to real cases. the
investigation is addrcsscd to cxpress generalized noise
pdfs, usually depending on parameters difficult 1o be
cstimated from real data samples, in torms of Higher-
Order-Statistics (HOS) parameters, which arc very casy
and quick to be extracted from data and arc particularly
suitable for quantifving deviation from Gaussianity [2].

As conventional signal processing algerithms based on the
Sccond Order Statistics, optimized in presence of Gaussian
noisc. may decay in non-Gaussian noisc, various works

used HOS theory [2] as signal-processing basis for noise
analysis and detection optimization, however, some
methods work only with non-Gaussian signals [3](4][5] or
only in Gaussian noise [3][6]{7]; some are not optimized
for low SNR values [3].

In this paper, attention is focused on the gemeralized
Gaussian function; it depends on a real parameter, c,
which is not easy to estimate from data. Nevertheless, ¢
presents a physical meaning, as linked with the pdf
sharpness. The HOS paramcter which betier describes
sharpness variability is the fourth-order kurtosis. 5. The
analytical relationship between ¢ and 3, and the range of
kurtosis in which the resulting pdf model can be applied
are introduced. The resulting svmmetric finction has the
same charactleristics of the generalized Gaussian, and is a
realistic noise-pdf modet for 1.865<f8,<30 (hence for both
sub- and super-Gaussian pdfs). 1t is compared wilh another
kurtosis-based pgeneralized symmetric function, the
Champernowne model [8][9]. which resuits less generai.

In order to detect signals in the critical case of low SNR
values (in the range [-20, 0] dB), the statistical testing
approach selected is a Locally Optimum Detector (LOD)
[1]. The new pdf proposed is applied in the design of a
LOD ftest, used for detecting constant wcak signals
corrupted by real underwater acoustic noise [10][11].

2 DESCRIPTION OF THE KURTOSIS-BASED
MODEL AND ITS APPLICATION TO THE LOD
TEST

In the context of noise modelling, one of thc most
noticeable ways in which estimated noisc distributions
deviate from Gaussianity is in kurtosis f3,, i.c.. the ratio of
the fourth and the square of the sccond moments, It is
equal to 3 in the Gaussian case; the sharpness of the pdf
shape is higher (lower) than the corresponding Gaussian
function when f3, is larger (smaller) than 3. A good modcl
for generalized symmetric pdfs has variable sharpness.

One of the well-known symmetric pdf models with variablc
sharpness is the generalized Gaussian, which depends on
the real parameter c:
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where {x} is generic iid noise with mean value p and
variance o2
The model variability is due to the two parameters yand c.
yinfluences the deviation of samples from the mean value,
since it 1s expressed in terms of the variance:

y= i I'r3 c)
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where 1) is the standard Gamma function:

pgg’.(x) =

Fe
k)= [y e ay

p) . (3)
¢ is a theoretical parameter that influences the model
sharpness, but cannot be directly estimated from data
samples. hence the relationship between ¢ and 5 is
introduced. It derives from the 5 definition in terms of the
pdf and is expressed by the following formula:
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Because of the I't.) [unction definition, it is impossible to
express ¢ in terms of B, with an analytically exact
expression. Hence an approximation is required. A good
approximation was found by applving the Least Squared
Method (LSM) on a gencric second-order, monotonic
analytical expression of §a=f4(c):

8 1‘865c2+o:;¢+[x2
2= N .

& +810+6; (5)
With this paramctric expression the same asympiotic
behaviour of (4) was approximately maintained:

B=3 for c=2 (Gaussian case); =6 for =1 (Laplace case).
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Fig. 1. Comparison between the true (solid linc) and the

approximated (dashed ling) function f§,=F(c).

The LSM results follows:

1.865(c+0.12)

B2 R
(c+0.12) (6)

A comparison between the shape of the exact function (4),
numcrically compuled, and the proposed approximation is
shown in Fig. 1.
By inverting the monotonic function (6), the following
expression can be found:

em | g2 (7)
By —1.865

which is defined for 8,>1.865 and can be considered a
good approximation of the exact expression for [(;<30.
This range includes about all the kurtosis values which can
be measured in real applications [8].

This formula attows one to cxpress pgg(x) in terms of fi,.
Its validity is confirmed by observing that for S>3 the
resulting pdf has feavy faifs, as expected [11]. Figure 2
shows a family of generalized Gaussian functions as f
varies.

Another useful kurtosis-based symmetric pdf with variable
shape is the Champernowne function [8]; however it is less
general than the aforcsaid model, as it can be applied only
if the {i, value falls in the range 1.8<fl,<4.2 (hencc the
Laplace case is not included), and is realistic only if noise
components have a hyperbolic distribution of power {8].
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Fig. 2. Generalized Gaussian family (u=0; 74=1).
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Fig. 3. Champernowne pdf family (u=0; o?=1).



Figure 3 shows a number of Champernowne functiens as
{3, varies.

In both cases the additional information introduced in the
models for a morc realistic and gencralized noise statistical
characterization is contained in a single 4th-order
parameter (3 »), being very simple and quick to estimate.
Another class of parametric distribution functions useful
for describing certain kinds of noise processcs consists of
the o-stable distributions (0<e<2) [12], deriving form the
Fractional Lower-Order Statistics; in {12] the symmetric a-
stable functions are investigated and applied. Their main
limitation is that they can describe in a realistic way only
impulsive noise; for this reason they are not taken into
account in this work, devoted to generalized noisc
characicrization.

3 APPLICATION TO THE DESIGN OF A LOD
TEST

The  kurtosis-based  gencralized  Gaussian  and
Champernowne models are suitable for the design of LOD
tests [1], as in both cases the non-linearity g;,(x) and the
maximum asymplotic relative efficiency p can be expressed
analytically in terms of elementary functions.

In this paper attention is focused on thc problem of
detecting constant Af-sample-long time signals having
amplitude # when they reach the receiver (6—0).

The LOD test criterion for constant signals [1] is based on
the following cxpression linking the test statistics A, and
the statistical threshold T, given the significance level o
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px) is the noise pdf model, {y;. i=1,..M} is the rcceived
observation sequence on the basis of which 1o decide.
Further than the non-lincarity function, onc of the most
significant parameter for determining the detector
performances from a theoretical point of view is the
maximum Asymptotic Relative Efficiency (ARE) p [1],
defined in terms of the noise variance and pdf model as
follows:
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It is 1o notice that no constraint is requested about (he
statistics of the signal to detect; moreover the test ncods
only the value of Py, wt, fixed by the vser.

On the other hand. the main limitalions of a LOD approach

consist in the foliowing characteristics:

1. it nceds complete a-priori knowledge about the signal
when it is acquired (in terms of time shape); this aspect
is particularly critical if distortion phenomena occurs
during the propagation: in these cases. not only
complete a-priori knowledge on the transmitted signal,
but also a realistic channel model have to be avaitable:

2. only for few pdf models (hc test threshold 7, can be
computed analytically on the basis of the A;, expression
(8); otherwisc, the threshold has to bc computed by
means of numerical or empirical procedures.

In the gencralized Gaussian casc the following expressions
for gy,(.) and p can be found:

8logel¥/) = of |y - sgncy—p) (12)
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Peg = Iil/c; (13)
(notice that §,<25.2 is needed for having a finite p).

The respective graphs are presented in Figs. 4 and 3. For
analytical dclails on the LOD test based on the
Champernowne noisc model, see {8]. These non-linearity
and maximum ARE graphs can be compared with similar
graphs given in [11] for other non-Gaussian known pdfs.
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Fig. 4. Graphs of g;,(x) as 8, varics (0?=1).
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4 EXPERIMENTAL RESULTS

The two LOD tests, presented in Section 2 and based on
the generalized Gaussian and the Champernowne pdfs
respectivcly, were applied for the detection ol known
deterministic signals corrupted by real underwater acoustic
ship-traffic-radiated noise. Selected noise  sequences,
sampled at a sample frequency /;=2000 Hz, were analy~zcd
and characterized at average by the estimated parameters
u=0, 0=1650, B,=2.45 as described in detail in
191[10][11].

LOD performances are presented by means of experimental
curves of the detection probability as SNR varics, given a
certain value of the Probability of False Alarm, Ppy
(Pp4=5%) and a fixed number of samples A4 (M=1000).
Results are shown in Figs. 6 and 7.

As expected, detection performances improve as much as
the pdf models arc generalized and depend on a large
number of parameters.
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Fig. 6. Comparison of LOD tests based on the Gaussian
and Champernowne pdfs.
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Fig. 7. Comparison of LOD tests based on the
Champermowne and the generalized Gaussian pdfs.

5 CONCLUSIONS

The weli-known generalized Gaussian pdf has been
focused as a very uscful analytical paramectric generalized
model for detection optimization in rcal cnvironments. It is
introduced as depending on thc fourth-order parameter

kurtosis, instead of on a theoretical parameler in order to
make casier and optimize its application to the statistical
charactlerization of real stochastic data. This model has
been applied in the design of a LOD test and compared
with another kurtosis-based pdf model, the Champernowne
pdf. which has resuited iess general.

The main limitation of the kurtosis-based generalizcd
Gaussian function is its syspnefry: in order to include also
asymmetric shapes, a third-order parameter, e.g.. the
skewness. should be inserted as additional pdf parameter.

REFERENCES

1] S.A. Kassam, Signal Detection in Non-Gaussian
Noise, Springer Verlag, Berlin, 1988,

[2] C. Nikias, I. Mendel, "Signal Proccssing with Higher-
Order Spectra," JEEE 8P Magazine, pp. 10-37, 1993,

[31 M.J. Hinich, G.R. Wilson, "Dctection of non-Gaussian
signals in non-Gaussian noisc using the bispectrum,”
IEEE Trans. on ASSP, 38 {7), pp. 1126-1131, July
1990,

[4] D. Kletter and H. Messer, "Suboptimal detection of
non-Gaussian signals by third-order spectral analysis,”
IEEE on ASSP, 38 (6), pp. 901-909, June 1990.

[5] Sangfclt E, Persson L., "Experimental performance of
somc  Higher-Order cumulant  detectors  for
hvdroacoustic transients," Proc. of I[EEE HOS
Workshop, pp. 182-186, Junc 1993

[6] Giannakis G.B., Tsatsanis M.K., "Signal detection and
classification nsing matched filtering and Higher order
Statistics." JEEE Trans. on SP, 38 (7), pp. 1284-1296,
July 1990,

[71 R.F. Dwyer, "Use of thc kurtosis statistics in the
frequency domain as an aid in detecting random
signals " [EFF J. of Ocean. Eng. . QE-% (2), pp. 85-92.
April 1984.

[8] R.J. Webster. "Ambient noisc slatistics,” JEEE Trans.
on SP, 41 (6), pp. 2249-2253_ 1993,

[9] A. Tesei, C.S. Regazzoni, "Signal detection in non-
Gaussian noisc by a kurtosis-based probability density
function model," JEEE Workshop on HOS. pp. 162-
165, Junc 1995,

[10]C.8. Regarvoni, A, Tesei, G. Tacconi. "A comparison
between spcctral and bispectral analysis for ship
detection from acoustical time serics,” in Proc. of
JCASSP'94. pp. 289-292, April 1994,

[11]1.H. Miller, J. B, Thomas "Detectors for discrete-time
signals in non-Gaussian noise," /[EEE Trans. on IT, 18
(2). pp. 241-250, 1972.

[12]CL. Nikias, "Signal processing with alpha-stable
distributions and applications," in [EHKE Proc. of
Nonlinear Signal and Image Processing, pp. 5-8, June
1995



