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ABSTRACT

The concept of mixtures of discrete HMMs (MDHMM) is
introduced. The application of MDHMDMS to the classifica-
tion of mixtures of signals is described. The optimal decision
rule is presented. Alternative algorithms with reduced com-
putational load are proposed: a simplified decision statis-
tic is defined and sub-optimal search methods are discussed.
The performance of the various algorithms are analyzed on
Monte-Carlo simulations.

1 INTRODUCTION

Discrete hidden Markov models (DHMMSs) have been widely
used for signal classification purposes. In these applications,
the signal to be classified z, is transformed into a sequence
of discrete symbols {o:} by a pre-processor; the sequence
is then fed to a DHMM classifier (Fig. 1). The classifier
chooses the DHMM that best “matches” the sequence {o:}
among the possible DHMMs. This “matching” is generally
made in a probabilistic sense, that is, the sequence is assigned
the DHMM with the maximum a posteriori probability. In
speech recognition, the pre-processor usually performs some
spectral transform (e.g., LPC, cepstrum, filter bank, ...) of
a sliding window of the signal followed by a vector quanti-
zation. In frequency tracking, the pre-processor is a set of
harmonic signal detectors [1].

In many situations, we observe not a single signal z, of
interest, but a combination of such. For example, in en-
vironmental sound recognition [4], multiple sound sources
(e.g., cars, trucks, airplanes, animals, ...) can be present
and their contributions sum up in the signal recorded at the
microphone. Let us assume that there are ¢ simultaneous
signals z; -, ¢ = 1,...,¢, each of which has to be classi-
fied, and that a family of possible DHMMSs for the signals is
available. If the signals were observed separately, it would be
possible to use the classification scheme of Fig. 1 on each sig-
nal: pre-process each z; r to get sequences of symbols {0;+}
and classify these sequences according to their “match” with
the DHMMSs. In practice, however, we only have access to
the sum y, = Z§=1 z;,r of these signals (Fig. 2). There-
fore, the set of sequences {0;:} is not available and has to
be estimated from y,. Pre-processing schemes for that pur-
pose have been proposed previously, e.g., in [5] and [7] for
the “simultaneous VQ” of multiple AR signals, in [1] for the
simultaneous detection of multiple sinusoids, and [2] for au-
ditory scene analysis. In this paper, we propose extensions
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Figure 1: Classification of signal with a discrete HMM.

Figure 2: A mixture of ¢ signals.

of the standard discrete HMM approach for the classification
of the mixtures of symbols obtained at the output of these
pre-processors.

2 MIXTURES OF DHMMs

In this section the concept of mizture of DHMMs (MDHMM)
is introduced. As usual, a DHMM is defined as a prob-
abilistic function of a Markov chain, where the observa-
tions are conditionally independent given the hidden state
of the chain. Let {Ai,..., A} denote a set of ¢ DHMMs
and let ¢;; € S; denote the state of the i-th DHMM at
time t, where S; = {oi,1,...,04,n,;} is the set of N; in-
dividual state of i-th hidden Markov chain. The evolu-
tion of g; ¢ is characterized by the N; x N; transition ma-
trix A; = (aimn), Gi,mn = Plgit+1 = Ginl¢it = Oim],
1 < m,n < N;. We assume that all Markov chains are er-
godic and stationary, i.e., that the initial state distribution
m; on S; is the unique solution of m;A; = w};, where 7}
denotes the transpose of ;. Let {0;:} € O; denote the se-
quence of discrete observations of the i-th hidden Markov
chain, where O; = {w;,1,...,w;i m;} is the set of M; pos-
sible observations. The state-conditional emission proba-
bilities are defined by the stochastic matrix B; = (bi,mn),
bi,mn = Ploit = win|@it =0im], 1 <m < N;, 1 <n< M.

Consider the Cartesian DHMM or CDHMM (3] obtained
from Ai,..., A, denoted X. The states and observations
sequences of A are formed from the states and observa-
tions of the components DHMMs by @ = (qi,,---,qc.t)
and o = (01,t,...,0c,). The state space S of X is thus
the Cartesian product of the state spaces of the component
DHMMs \;, i.e., § = @_, Si, and the observation space
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Figure 3: A mixture of c DHMMs.

o_f X is the Cartesian product of the observation spaces, i.e.,

= @;_, O:;. The CDHMM )\ is equivalent to a “stan-
dard” discrete HMM with state space S = {71,...,05},
N = [I_, Ni, and observation space O = {wi,...,wy},
M= Hi:l M;, where

o, = (0’1[1,...,0'61) 1<t <Ny,
c—1

n = (6; — 1) H N;
i=1 j=it1

Wy = (wl,zl,...,wcl) 1 E,SM,,
c—1

m = (6; — 1) H M;
i=1 j=i+1

We assume that the components DHMMs ); are indepen-
dent, hence the transition and emission matrices of A are
given by the Kronecker products

A:®Ai and B:®Bi, (1)
i=1 i=1

where A is a N x N stochastic matrix and B is a N x M
stochastic matrix. It follows directly that X is ergodic and
that the initial stationary distribution on S for X is given by
™= ®§=1 .

For signal processing reasons that will appear more clearly
in Sec. 3.1, let us assume that {5;} is not observed directly,
but through a memoryless process f : O — O. That is, we
only have access to a probabilistic function of 6, 0; = f(ot)
the states ¢ are doubly hidden. Let M be the cardinal of (9
the probabilistic mapping f can be characterized by a M x M
stochastic matrix F = (fimn), frmn = P[0t = On|0t = Om],
1<m< M,1<mn< M. Itis not difficult to show that
{6:} can be viewed as a DHMM with state space S and
observation space O, with transition matrix A and N x M
emission matrix _

B = BF. (2)
Figure 3 summarizes the definition of a mixture of DHMMs.

Denote by A the DHMM equivalent to a mixture of
DHMM. This DHMM is ergodic and stationary, if started
with the initial stationary distribution 7. It is completely de-
fined by the matrices A and B which can be easily computed
from the component DHMMs parameters and the matrix F
by (1) and (2). All the standard computational methods
available for DHMMs can be applied to A. For example, if
of = {61,...,07} is a sample of length T of the process
{6}, its hkelihood P[OT|A] can be computed efficiently by
the usual forward-backward procedure.

Note that the computational load required by mixtures of
DHMDMs is generally high. However, if the matrix F has a
particular structure, e.g., if F' is diagonal, or block-diagonal,
there can be consequent simplifications or factorizations of
the algorithms. Further details on mixtures of DHMMs can
be found in [7].

3 CLASSIFICATION OF MIXTURES OF SIG-
NALS

Let A = {A1,A2,..., Ak} be a dictionary of DHMMSs. A sin-
gle signal . will be classified as correspondlng to DHMMs
M if A = argmaxy, P[\i|OT], where O = {o1,...,0r} is a
sample of length T of the output of the pre-processor (Fig. 1)
to which z, is fed, and P[X\;|OT] is the a posteriori proba-
bility of DHMMs \; given Of. The mixtures of DHMMs
introduced in the previous section can be used to extend
this classification method to mixtures of signals of the type
of Fig. 2.

3.1 Mixture Pre-Processing

Consider a mixture of signals y. like that of Fig. 2. If each
component signal z;. could be pre-processed separately,
the resulting sequences of symbols O}, = {o1,...,0i7}
could be used to form a vector sequence Of = {51,...,07r},
ot = (01,t,---,0¢,4)". If DHMMs are used as models for the
component sequences {0;, }, the vector sequence can be mod-
eled as a CDHMM. Given access to y- only, different pre-
processors have to be used that will perform both a decom-
position of the mixture and the “pre- processmg conversion
to a sequence of discrete symbols O = {61,...,0r}, This
sequence O can be viewed as an estimate of Of. For ex-
ample, pre-processors for mixtures of signals have been pro-
posed for detection/tracking of sinusoids in [1], for an exten-
sion of the LPC-VQ method to mixture of signals in [5] (see
also the companion paper [6]), or for auditory-model-based
signal decomposition in [2].

The effect of these “mixture” pre-processors on y, can be
modeled as an application of the “single” pre-processor to
each of the z; » followed by a memoryless process that maps
the sequences {0, } onto {6, } and accounts for the possible de-
tection errors in the pre-processor. This memoryless prossess
can be characterized by a stochastic matrix whose row index
corresponds to all the possible “Cartesian” vectors obtained
by combination of DHMMs in A, and whose column index
corresponds to all the possible outputs of the pre-processor.
Let Fa be this matrix. It will possess some particular struc-
ture due to the properties of the pre-processor: rows that cor-
respond to similar combinations of symbols up to a permu-
tation are equal, rows that contain repeated symbols cannot
be differentiated. The following frequency tracking example
illustrates these properties. Assume that the pre-processor
makes a decision on the presence or absence of a sinusoid
in series of frequency bins, and assume that two sources are
present. If two bins are “on,” the pre-processor cannot de-
cide which sinusoid belongs to which source: detection is
performed up to a permutation of symbols. If the two sinu-
soids are in the same frequency bin, this bin will be the only
bin “on,” and there will be no difference with the detection
of a single sinusoid in this bin: detection is performed up to
a repetition of symbols.

3.2 Problem Statement

Let A = {Ai,A2,...,Ax} be a dictionary of stationary er-
godic DHMMs. Let & = {i1,i2,...,ic}, tm # in if m # n,
1 <, < K, be an index set for the components in A. There



are 25 possible different index sets £. To each ¢ corresponds
a series of CDHMMs obtained by Cartesian products of the
ordering of the \;, i € £&. These CDHMMs are identical, up
to a permutation of the states. So, we will consider that they
form a class of equivalence and we will speak of the CDHMM
corresponding to an index set &, which will be denoted X¢.
In practice, any of the member of this class can be used for
the computations. In accordance with the considerations on
the pre-processor of Sec. 3.1), the memoryless process f¢ is
such that it yields the same MDHMM 5‘6 when acting on
any CDHMM of the equivalence class A¢. The MDHMM
classification problem can then be stated as: given a sample
O7T, find the index set of the DHMM components that are
present in {0:}.

In our development, we will make the following hypothe-
ses. All the DHMMs in A share the same output set
O = {wi1,...,wm}. Hence, the CDHMM )¢ corresponding
to £ will have state set Sg = ® ice Si (up to a permutation
of the coordinates) and observation set O = 0%°. Clearly,

= #8 = H N; and My = #0; = M°. The output
set O is the set of all subsets of O , hence, M = 2"~ for all
¢. The matrix F¢ can be obtained by selecting the appropri-

ate rows of Fo. The parameters of the MDHMM 5‘6 can be
obtained from

A=A, B=@Q)Bi Bc=BFe. (3)
i€g i€
We will also assume that the dictionary A is identifiable,
i.e., that L
d()‘£7 )‘5') > 07 v £ # 5,7 (4)
where d(-, ) is a probabilistic distance for DHMMs, e.g., the
Kullback-Leibler distance introduced in [8].

3.3 Bayes Decision Rule

The Bayes decision rule with the minimum probability of
error is simply

3

arg max P[X¢|O7]
= argmax PIOTIAPIE) ®)

where P[£] is the a priori probability of £ (or, equivalently,
of 5\5) That is, the best estimate of the components that
are present in the signal is given by the index set (and corre-
sponding MDHMM) that has the highest a posteriori prob-
ability given the data OF .

A simple prior for £ can be obtained by assuming that
each of the components A; is “on” with probability P; and
is “off” with probability (1 — P;). We have then

pgl =~ JJa-P).
i€g 3743

3.4 Sub-optimal Methods

The maximization of (5) requires the computation of
P[OT|X¢] for all €, i.e., for the 2% possible values of £. For
a given zxi, the computation of P[Oﬂig] requires in gen-
eral O(MET) operations with the forward method or any
equivalent. This computational load can rapidly overcome
the potential of even the most powerful workstations. The
complexity of the combinatorial problem can be reduced in
two ways: simplified heuristic search strategies can be used
instead of the complete combinatorial exploration of all the
possibilities for ¢, and approximations of (5) can be used
instead of the full posterior probability.

3.4.1 Alternative Decision Statistic

Instead of the posterior probability (5), simplified decision
statistics with reduced computational load can be used. One
such statistic based on the ergodicity and stationarity prop-
erties of MDHMMSs will now be introduced.

An ergodic and stationary MDHMM ¢ induces a station-
ary distribution on . Let ke be this stationary distribu-
= (Hf,lap’ﬁ,?a s 7#5,1\71),7 He,i = P[at = (‘sz\{] This
marginal distribution is related to the parameters of ¢ by

tion: p,

He = Bgme. (6)

If {64} is generated by a stationary ergodic A¢, the empirical
distribution p(OT) must converge to pe when T increases.
That is,

lim pi(O7) = pe,i as., (7)

T— o0

with
1 T
= Tzl{at:mi}, (8)
t=1

where 1g is the indicator function for the event E. This sug-
gests a decision statistic: compare the empirical distribution
of OT to the distributions corresponding to the various ¢ and
select the closest one according to a probabilistic distance.
For example, with the Kullback-Leibler distance

Zul O log 91 (g)

D(u(O7)l|pe) = e

we get

¢ = argmin D(n(O7) ). (10)

The computational complexity of (9) is O(M). Note that
the minimizer g” need not be unique even if the identifiablity
condition (4) is fulfilled. Ties can be broken with the poste-
rior probability (5).

More complex schemes based on the combination of a sim-
plified decision statistic and the posterior probability are also
possible. For example, the simplified decision statistic (9)
can be used to select L-best candidate £s, and the final de-
cision among these L hypotheses can be made with (5).

3.4.2 Simplified Combinatorial Ezploration

Instead of considering all 2% possible £s, we can evaluate the
decision statistic (posterior probability or other) for some of
them only. Sub-optimal search methods similar to feature
selection in pattern recognition can be applied (see, e.g.,
Chap. 5 of [9]). We will not give further details on heuristic
search strategies here, but will suggest a very simple way to
reduce the search space.

The pre-processor can provide an estimate of the number
of DHMM components present. The observed variable 6,
belongs to the set of all subsets of @. If the pre-processor
behaves properly, it can be expected that the number of
elements in 6;, viewed as a subset of O, are “close” to c. Let
¢t = F#0; be this number of elements. The relation between
¢ and ¢ can be analyzed precisely for given A and F, and
proper choices for the selection of a size for the index sets
€ to be considered based on ¢ can then be made [7]. One
simple choice is to take the index sets £ such that

ilzfét < c(§) < supé. (11)
t



Influence of the sequence length on the error rate
90 T T T T T T T T

B al D
o o o

Probability of error

w
o

0 10 20 30 40 50 60 70 80 90 100
Sequence length

Figure 4: Evolution of the classification error rate when the
sample length T increases.

4 PRELIMINARY RESULTS

In order to assess the validity of the concept of MDHMMS
for the decomposition of mixtures of signals, several Monte-
Carlo experiments on simple examples have been conducted.
The goals of these experiments were to learn about the accu-
racy of the model for classification purpose, and to study the
influence of the quality of the pre-processor on the recogni-
tion results. The DHMM dictionary contained three models
A = {A1, A2, A3}, of respective order Ny = 1, N, = 2, and
N3 = 2. The DHMMs output space O contained three ele-
ments (M = 3). The transition and emission matrices of the
three DHMMSs were

Ar=(1),

_ (05 05 _( 2/3 1/6 1/6
Az = < 0.1 0.9 ) Bz = ( 1/6 2/3 1/6 >
_ (095 0.05 _(1/6 1/6 2/3
As = ( 0.95 0.05 ) Bs = ( 1/6 2/3 1/6 )

In a first experiment, we supposed the stochastic ma-
trix Fr to be binary. That is, we assumed that the pre-
processor was perfect (no confusion between symbols), the
only pre-processing effect accounted for by Fr was the “pro-
jection” of vector of symbols onto their subsets of distinct
symbols with probability one, i.e., CDHMMSs symbols o, like
(w1,w2), (w2, wi,wi)’, or (w1,ws,w1)’, are equally mapped
onto 0; = {wi,w2}. Note that, in this case, the memory-
less process 6 = f(0¢) is purely deterministic. The symbol
sequences corresponding to the MDHMMs were generated
by mixing sequences generated by the components DHMMs
with f). At this stage of the experiments, our goal was to
study the influence of the sequence length T on the decom-
position/classification accuracy. If the set of HMM and their
mixtures are identifiable, the error rate should tend to zero
when T increases. This is indeed verified in Fig. 4.

In the next experiment, we supposed that the pre-
processor had, in addition to its deterministic “projection”
behavior described above, some confusion between “close”
symbols. For example, if the input was (wi,ws) (or any
equivalent combination of symbols), the output would be
{w1,w2} with probability 1 — ¢, and any of {w2}, {w2}, or

Bi=(08 01 01)

Influence of the pre—processor quality on the error rate
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Figure 5: Evolution of the classification error rate when the
performance of the pre-processor decrease.

{w1,w2,ws} with probability 6/3. That is, the pre-processor
behaved perfectly with probability 1 — 6 and committed
an error with probability d. Figure 5 gives the classifica-
tion/decomposition error rate of the system as a function of
the probability of error of the pre-processor 6. The sam-
ple length T was set to 100. The results show that the
performance of the classifier for decomposition of mixtures
of DHMMs degrades smoothly with the performance of the
classifier.
Other results will be shown at the conference.
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