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ABSTRACT

The purpose of this paper is to propose the design and the
use of 3 Neural Network for model order selection. The
proposed neural network learns from real life situation by
constrocting an imput/ontput mapping (for detection) which
brings to mind the notion of mon parametric statistical
inference. Such a strategy can improve performances of
traditional tests relying on linearity, stationanty and
second order statistics. We focus on the case where the
noise covariance matrix is unknown but is a band matrix.
This paper includes simulations which show improvements
obtained by supervised approach.

1. INTRODUCTION

Recently, the new class of so-called subspace methods for
high resolution parametric estimation (spectral analysis or
direction finding for example) has received a great deal of
attention in the literature. These high resolution methods
require the model order knowledge. This is a difficult task,
and classical tests suffer from following limitations :

© a restrictive a priori hypothesis : a noise whiteness.,

8 they are efficient only in asymptotic condition;

© they involve an eigen-decomposition, which does not
allow a real time implementation.

The mam contribution of this paper is an alternative when
the noise covariance matrix is unknown but is, for
sitnulation convenience only, a band matrix. In sensor
array processing, this amounts to assuming that the noise
field is locally spatially correlated [1]. The robust proposed
detection test will be based on a supervised approach.

In this paper. we shall focus on a Uniform Linear Antenna,
i the detection case of 0, 1 or 2 sources. The number of
sensors (N} and the number of snapshots (T) used to
estimate the covariance matrix R, are small This

practical situation is of a great interest.

2. PROBLEM FORMULATION

Antenna signal model

The conventional model of array processing is used. We
consider an Uniform Linear Array {ULA) of N sensors
situated in the wavefield penerated by M narrow-band
point sources. The distance between two adjoining sensors

is an half wavelength. Then, if x is the observation vector
{N.1), s the emitted vector signal (M,1) and n an additive
noise (N, 1), we have:

A(t) = A(B).s(t) +n(t) = (1) ~ n(t) W
where the columns of A, termed matrix of steering vectors,
are the parametric response of the array of sensors to an
emitter inpinging from the direction 9.

The signals s are assumed statistically independent of the
noise n. Se, from equation (1), the observation covariance
matrix R can be expressed:

R, =R _+R =AR_A"+R, 2

White Noise Case
If we suppose that noise components are uncorrelated from
an array element to every others with equal variance o,
we have:

R, =R, +c’ I 3
where I, is the N-dimensional identity matrix.
Asymptotically, the number of non zero eigenvalues of R,

is equal to the number of sources M, (N-M) eigenvalues
being zeros. So, according to (3), R, has the same

eigenvectors as R, with eigenvalues i =2, +a”. For

¥
R,. o is a depenesated order (N-M) eigenvalue.

These observations are the basis of most detection schemes
but are only valid for asymptotic assumption and a white
noise model.

Spatiallv Corvelated Noise

We suppose that the noise is spatially correlated over the
array. We consider, for shake of simplicity, the case where
the first row of noise band matrix covariance is defined by:

Rn(k.]}zcz.exp[ _(k_')w k=1taN (4)

. v 4

This model has been used for simulation convenience and
clarity of presentation. It is not connected to the proposed
method. Let us name L. the correlation fength:
lljm‘J R, c’.I, (whitenoise case) {5)
e =

The term L. permits to appreciate the difficulty of the
prablem.
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In underwater accoustic, this correlation is usually
modelized by a Bessel Function [1].

Mesure of performance

If M is the number of sources and M its estimated value,
performances are mesured by detection probability and by
false alarm probability:

Pd = Prob[M = M] fa= Pmb[M > M] (6)

3. CLASSICAL TESTS

Principle of statistical tests

Classical methods of statistical signal processing are
founded on three basic assumptions: linearity, stationarity
and second order statistics.

Model order selection is usually done from statistical tests.
These tests are based either on information theory (Akaike
Information Criterion (AIC) and Minimum Description
Length (MDL)) [2] or on decision theory (Khi 2) [3].

The former involve the log-likelihood of the observations,
expressed in terms of noise eigenvalues. The estimated
order is merely the one for which the log-likelihood added
to a penalty function is maximum.

The Khi-2 test relies on a recursive comparison of the
generalized likelihood ratio (which is asymptotically Khi-2
distributed) to thresholds computed a priori. These ones are
directly connected to the false alarm chosen. This test has
been modified [3] for small size of snapshots (non
asymptotic case).

These methods detect the number of "nonzero" eigenvalues
with the well-known problems which occur in case of
strong correlation or non equipowered sources. The
performances of these methods decrease drastically when
uncorrelated noise hypothesis is unaccurate.

Simulations

Let's consider a five sensors array. Covariance matrix is
calculated with ten snapshots. The thresholds of the Khi-2
test have been fixed a priori for a fa of 1% when L_— 0.
The first curve shows the expected value of estimated order
when two sources impinge on the array, while the second
curve concerns the false alarm (noise only case).
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Figure 1 : Degradation of performances of Khi-2 test along
the noise correlation length expressed in half wavelength.

When noise is uncorrelated, detection is accurate since we
find f, =1%. As early as correlation length becomes larger
than the distance between two sensors (an half
wavelength), the order of the model is overestimated and
the false alarm tends to 1.

Moreover, in real life situation, we have to work with a
finite sample size, irrespective to the statistical estimation
procedure used. Some improvements can be gained by a
supervised approach, as described in the next section.

4. SUPERVISED DETECTION

Presentation of the network
A Multilayer Perceptron with one hidden layer is used for
the supervised detection (fig. 2) [4].
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Figure 2: Perceptron and Multilayer Perceptron
with one hidden layer.

If X is the input matrix, the outputs Y of the network are
given by:

Y = f(W2.£(WiX+bLu') +b2.u!) %)

where f is a sigmoid function (the hyperbolic tangent
function in this case). The first layer is defined by the
weights matrix W1 and the biases vector bl, and the
second by W2 and b2. u is an unity vector of the same
length as the training base.

Input Coding: feature extraction of R,

In order to avoid huge training on all the correlation matrix
for different scenarii, some discriminant characteristics of
R, will be retained. In the case of ULA with 0, 1 or 2

sources, the correlation matrix has particular properties. In
fact, evolutions of modulus along sub diagonals give
informations about the number of sources [5].

In this issue, according to this observation, the inputs of the
neural network will be the means and standard deviations
of diagonal and sub diagonals of R, . If N is the number of
sensors, the size of R, is (N,N), so the neural network
requires only 2(N-1) real inputs.

The network's inputs are prescaled: a normalization avoids
the saturations of neurons and the mean suppression
allows to work in the linear zone of sigmoids at
initialization.

Output Coding

The number of ouput neurons is the maximum number of
sources, with the coding described on figure 3. After
training, the number of sources is obtained by the use of a
threshold on the output (fig. 4). This threshold is obtained
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according to the accepted false alarm probability (fa). In
this work, fa=1% for L, — 0.

For training, the outputs are coded according to the exact
number of sources, with level (-0.7,+0.7) instead of (-1,+1)
to avoid sigmoid saturation.
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Figure 4: The threshold o on the output of neuron
is given for a false alarm probability.

Training base

In operational context, training base is obtained with real
life data measured under cooperative scenario.

For the simulations, the supervised learning base is
obtained when the parameters (number of sources, SNR,
directions 0 and noise correlation length L) describe
randomly and uniformly the domain of variation.

Training: Backpropagation
According to the previous discussion, the learning synoptic
is the following;
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Figuré s: Leamning Synoptic.

During the leaming phase, weigths and biases defined by
(7) move to minimize the Mean Square Error (MSE)
between the desired output Dk and the network output Yk.
We have at iteration k:

& =D~ Y| (8)

Xy

)

If w is the weight vector which countains all the elements
of Wi and bi, w move according to the relation [6]:

Wiy =Wy . dy ©
The most classical algorithms use a first order development
of the MSE. So, the search direction d, is given by the

opposed of the gradient g,. This algorithm is slow to

converge due to the nature of error surfaces. One way to
guarantee a faster and more efficient convergence is to use
higher order derivatives. So, we use the conjugate gradient.
In fact, this method allows us to combine efficiently the
steepest descent simplicity and the Newton performances:
curvature of the error function is taken into account without
requiring Hessian estimation and storage. The search
direction is given by:
1
dy,; =8¢y +B-dy with By :7&”].(%“] &)
8ic- 8k

(10)

5. SIMULATION RESULTS

In these simulations, sources are supposed in the main
beam of the array pattern. This is the most difficult task
of detection.

The simulations are for a Uniform Linear Antenna with 5
sensors (N=5). A surestimation of M can not be accepted
here because the dimension of noise subspace will
decrease drastically, increasing variance on parameters
estimation: identification algorithms (MUSIC) can lack of
resolution. So we have necessary to estimate M with a
good accuracy.

White Noise Case

The figure 6 concerns the case of 1 source. The most used
tests (AIC and MDL) are not designed for a given false
alarm probability. This value can only be a posteriori
computed (with no control). Notice that in this figure, the
false alarm probabilities of AIC and MDL are about 20%.
We show the advantages of Khi2 and Neural Network
(NN) tests for which the false alarm probability is fixed a
priori to 1 %. We compare the results obtained for these
two tests and we observe the superiority of NN on Khi2.
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Figure 6: Comparison of the different tests
(1 source, T=10 fa=1% for NN and Khi-2).



The figure 7 concerns the cases of 2 sources strongly
correlated. Of course, results depend on the leaming base:
the resulis are better when the training base is important
{INN2 respect NN 1) and describes randomly and uniformly
a large useful domain of parameters. Simulations make
clear that supervised detection tests are the best.
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Figure 7: Comparison of the ditferent tests
(2 eyupowered mmd correlated sourees, =103,

Although these results are impressive, a good compromise
must be found between training and generalization.

Spatiully Correlated Noise

Simulations have been done when noise is spatially
correlated. We have first studied mfluence of noise
correlation length on false alarm for the supervised
approach (figure 8). Although false alarm increases with
cosrelation length, it takes reasonable values (less than
20% until L =3) compared with thoses taken for Khi-2

test {see figure 1).

0.5 . . . T
0,4s||
u,4| ‘
0.35}
0.3t

2 025

2
nis

;
1
01l :
n.a= : |
|

nt) s 1 1.5 2 5 3 is 4

_ i __ Correlation length . :

Fignre 8 : Degradation of performances of supeniised test along the
noise correlation length.

Figure 9 shows the ROC curves of supervised detection and
Khi-2 test, in correlated noise with L, =2. They are
computed m the particular case of decision between two
hypothesis, that is one source impinge on the array.
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Figure 9: ROC curves of supervised test and Fhi-2.

The training base is only composed of SNR equal to -15.-
10,-5.0.5 dB, so the curve obtained for -2 dB proves the
peneralization quality of the network.

6. CONCLUSION

A new approach to the detection of the number of signals
has been proposed. It allows to handle situations where the
noise field is spatially correlated. Unlike almost existing
tests, it does not assume the noise covariance matrix to be
known. Simulations confirm expected performances in
small sample size. Morcover, the proposed test does not
require eigen-decomposition.
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