GFLOPS COMPUTER: AN IMAGE PROCESSING
PARALLEL ARCHITECTURE

Dominique Houzet, Abdelkrim Fatni
IRIT-ENSEEIHT-INP,
2 rue Camichel. 31071 Toulouse, France
Tel: +33 61 38 83 18; fax: +33 61 58 82 09
houzet@enseeiht.fr

Abstract

The real-time Image and signal processing
appfications, such as vision, image synthesis, HDTYV,
signal processing, neural networks, require both
computing and inpuifoutput power. The GFLOPS
project is dedicated to the study of all the aspects
concerning the design of such computers. Its aim is to
develop a parallel architecture as well as its software
environmen! to implement these applications
efficiently. The proposed architecture supports up to
512 processor nodes, connected aver a scalable and
cost-effective network al a constant cosl per node.
GFLOPS-2 is a single-user machine which is designed
to be used as a low-cost parallel co-processor board in
a desk-top work station.

1 INTRODUCTION

Most recent MPP systems employ fast sequential
micropracessars surrounded by a shell of
communication and synchronization logic. The
GFLOPS-2 computer [5] provides an elaborate shell to
support global-memory access, prefetch, atomic
operations, barriers, and block transfers. This shell is
integrated within the processors to build a
hemogeneous tightly-coupled architecture. Based on
this design, a simple but powerful parallel extension
to the C language has been designed with the goal of
extracting the full performance capability out of this
machine. The basic approach is to provide a full C on
each node, with z rich set of assignment operations on
the collective global address space. With GFLOPS-2,
the semantics of the hardware primitives for global
operations are essentially at the same level as the
language primitives. This work originates from the
SYMPATI project. This project led to the joint
development of the Line Processor SYMPATI-2 [1]
developed by our laboratory and the CEA-LETI-Saclay
Nuclear Agency. This Line Processor has been
commercialized since 1993 by the CENTRALP

company. SYMPATI-2 provides excellent
performances as shown through our response to
Preston's Abingdon Cross benchmark [2].

To address a wide array of applications, low
latency communication is necessary in addition to
high throughput. Latency of fine grain communication
(such as a transfer of a few words) is especially
imporiant for good performances, Therefore,
GFLOPS-2 provides 3 classes of architectural
mechanisms that implement an automatic locality
managemeni strategy: globally shared memeory,
integrated message-passing and latency tolevance. This
paper describes the experience gained by designing,
fabricating, and running a complete parallel system.
Section 2 describes the GFLOPS-2's implementation
and shows how the mechanisms combine to produce a
coherent system. Section 3 discusses related wark on
parallel architectures and finally, section 4 summarizes
the insight gained from implementing GFLOPS-2.

2 THE GFLOPS-2 MACHINE

The GELOPS-2 architecture is organized as shown in
Figure 1. Memory is physically distributed over the
processing nodes. Each processing node is identical,
composed of two high-performance custom processors,
8 common floating point unit, a network module and
an [fO interface. The network module forms the heart
of the node, integrating the memory controller, the
processor interface and the network interface. This
integration allows for low hardware overhead while
supporting high performance communication
mechanisms. The hardwired data movement logic
achieves low latency and high bandwidth by
supporting highly-pipelined data transfers. 16 nodes
form a first-level ring. A communication cell, on the
right of the figure, is used to built a larger
configuration with up to 512 processors organized as a
multi-ring structure.

host
intarfacea

|

HOST

WO
interface

|

Figure 1. The GFLOPS-2 architecture.
compiler. The first example is the following
addressing mode (with "ri” the register number i):
ri=expr;
tji=load(symbol+(ri*4)/NPE):
The address obtained here is a scale of an

2.1 GFLOPS-2 Processar

The aim of this architecture is to obtain
supercomputing power, such as the CM-2 for integer
operations, at low-cast. It is possible through the use
of different levels of parallelism: coarse grain
parallelism at the architecture level and fine grain
parallelism at the processor level. We have designed a
new custom-built processor structure to adapl the
processer power and the network bandwidth., The
latency and bandwidth of the network has been
analysed to design the processor [14]. Also we have
built a tightly coupled cluster in a single VLSI in
order to obtain high performance. Each PE is a
RISC/VLIW processor using 3 general integer units (3
32-bit ALUs) operating in parallel at each instruction
performed in one clock cycle, and linked to & multi-
ported register file. The instructions are &4-bit wide.
Two processors share a common floating point unit
(single precision +, -, ¥). The defined structure is such
a structure that at each instruction., each PE can
perferm 3 arithmetic or logical operations, the access
to the next instruction, an external memory and a local
memory accesses, The local internal memeory is used
to store local static variables and the program stack.
Thus, with a 33 Mhz clock rate, one PE leads to the
peak computational rate of 165 Mega Instructions Per
Second (MIPS). The power of a configuration with 32
PEs is about 5 GIPS.

Several new ALU operations and addressing
modes have been introduced in the processor. These
operations are specific to sghared-memory
multiprocessors. We have introduced them to improve
the execution of codes generated by the CJ// [8]

index register "ri" divided by the number of processars

{NPE), and added to a symbolic constante (the base

address of an array); The C corresponding stalement is:
var=symbole[expr/NFE];

This kind of addressing mode improves
slightly the performances of the machine because most
of the parallel computation is performed on parallel
arrays. The second example is the 4-bytc veclor-
operations introduced in the ALUs. Each 32-bit data
word can thus be processed as a vector of 4 bytes
simultaneously. Many typical basic Image processing
algorithms can use these operations, with 4 grey-level
pixels in 32-bit word or with one RGB pixel (3
components). Most of these regular pixel-level
algorithms are improved by a factor of 3 to 4.

2.2 The GFLOPS-Z Network Module

Following SYMPATI-2, AIS-5000 [3], or KSRI
[12], a processor organizzticn around a one-
dimensional linearly expandable network has been
defined. For many vector based algorithms used today,
the 1D linear array architecture can be shown as one of
the most effective parallel architecture. With this
organization it is easy to increase the number of
processors in order to adapt the performance of the
structure according te the application requirements.
The network we have designed is a multi-ring
interconnection network. Each processor can have
direct access to a subset of four memory banks

without routing conflicts with other processors. Each
processor can also communicate directly with its two
neighboring processors through register transfer,
implementing & systolic communication style as
iWarp [6] does. This style of communication can be
performed only with synchronous accesses for regular
algorithms. The GFLOPS-2 processor provides an
efficient and tight coupling between the processor
pipeline and the communication network. All the
network modules are connected to built a
bidirectionnal ring with two FIFOs per module, Two
processors are connected to each module to form a
cluster. The distant communications are performed
with atomic messages: one address word and one data
word presented in figure 2. The messages use the
FIFO in each network module to reach the target
memory. The routing protocol used is a simple
wormhole like protocol {13],

- remote write message: 2 words of 32 bits:
| type | N° target processor | target memory address |
I data to write |

- remote read message: 2 words of 32 bits:
| type | N® target processor | farget memory address i
| I N source processor Isource memory address |

Figure 2. Messages format.

Although GFLOPS-2 provides the abstraction
of globally shared memory to programmers, the
system’s physical memory is statically distributed over
the ncdes in the machine. On each node a network
module fields memory requests from two processors
and determines wether requests access local or remote
memory. Thus for performance reasons much of the
underlying software is implemented using message
passing. The performances of all of the layem of
software that help manage locality {including the
compiler, libraries and run-time system) depend on an
efficient communication mechanism. Features in the
processor and the network maodule combine to provide
a stream-lined interface for transmitting and receiving
messages: both system and user code can quickly
describe and atomically launch a message directly into
the interconnection nelwork; a direct memory access
mechanism allows data to flow between the network
and memory.

All synchronization capabilities are available
with instructions such as “barrier”, "test and
increment” and a "wait" on the compietion of all the
distant accesses. Two hops in the ring are performed at
each processor clock cycle. The bandwidth per network
module is iwice the processor bandwidth. Figure 3
presents the internal structure of the network module.
The memory managment unit for both local and

temote accesses and for the two external bus uses a
fixed priority scheme to resolve memory conflicts.
Remote read and write are non-blocking. A sync
statement is used to perform a blocking remote
memeory access. A remote read. which is in fact an
exchange of data between the target memory and the
source memory, implements a prefetch controled by
the program. The compiler automatically generates a
temparary local variable to store the data read in the
remote memory, and generates a “"wait" for the
completion of the read. When a remote memory read
regches the target network module, the read is
performed and a remote write message is sent to the
source memory bank. Overlapping of remote accesses
{software prefetching) with treatment of data is
performed at compile time for basic blocks and for
loops. Thiz mechanism attempts to tolerate the
latency of inter-processor communication when it
cannot be avoided. Prefetching allows code to
anticipate commaunication by requesting data or locks
before they are needed.

shared data mamory

| L]
I |
I |
I |
1 |
) 1
1 ramata lecal 1
1 actess access 1
I 1
' | 4 (
1
left :~ —] latt it ——— right
sutarnal | | extarnal
bus h -1 right fite —> bus
1 |
I 1
R N |
proceasny 1 procagsar 2

Figure 2. Block diagram of the network module.
2.3 Prototype

The first VLSI of the processor was realized to build a
first protetype. This first prototype implementation,
running since the beginning of 1995, demonstrates
that a parallel system can be both scalable and
programmable through the use of the virtually shared
memory paradigm, physically implemented with
atomic message passing. The second VLSI, with two
processors, a floating peint unit and a network
module, has been designed in VHDL and will be
available at the beginning of 1996, It is a CMOS 0.7
im chip with 256 pins. A processing node is
composed of one VLSI and three SRAM 256k*32
chips with 20 ns access time. The two inter-VLSI bus
and data-memory bus are 32-bit wide. The instruction

bus is 64-bit wide and both the data address and
instruction address bus are 24-bit wide. The interface
bus i 4-bit wide. Both the gate count of the network
module and the floating point unit are nearly 15k gates
each, Each processor gate count is nearly 35k gates.
‘The clock frequency obtained is 33 Mhz. A ring board
containg 16 VLSI along with their external memories
and the host interface. This interface is designed with a
Xilinx [15] FPGA 4005PG156-4. GFLOPS-2
implements the PCI standard bus for its I/O
subsystem. The board mesures 12" by 16". The second
level ring is not implemented yet. User access to a
GFLOPS-2 machine is through a host IBM-PC
computer. Client interface sofiware is connected to the
GFLOPS-2 machine via LINUX sockets to a server
pracess running on the host.

3 RELATED WORK

Tweo families of programmable computers have been
used to implement Image or signal processing
applications: the general purpose computers and the
application specific computers. A number of
application specific computers has been proposed to
treat efficiently applications such as image processing.
Most of them are SIMD processors like SYMPATI-2
f1], SCAM [9]. MGAP [10] or MasPar MP-1 [11]
which obtain very good results on synchronous regular
algarithms. Few MIMD dedicated processors have
been developped such as IUA, PASM [4] or SM-IMP
[7]. The general purpose GFLOPS computer is aimed
at obtainning equivalent computing and inputfoutput
power as the dedicated SIMD architectures.

5 Canclusion

The diversity of algorithms in the Image processing
field needs the use of general purpose architectures.
The proposed architecture is both scalable and
programmable in a high level language without
sacrifying the processing and input/output capabilities.
The Cf/ parallel language will give us the way to
program such architectures and develop complete
image processing applications. The latency of fine
grain communication is imporiant to reduce the
overhead of remote memory access. The
communication in GFLOPS-2 uses small end simple
two-word packets. Packets are created with a single
instruction, transferred by self-routing on the network,
and treated in the remote memory module without
interupting the processor.

The working machine demonstrates that both
the shared-memory and message-passing models
permit efficient and scalable implementation;
motreover, the twe models should be unified in a same
framework. At this time, effort is underway to built a

single board 16-node machine. Although GFLOBS
addresses many of the issues of large-scale
multiprocessing, it is easentially a single-user
machine which is designed to be used as a low-cost
parallel co-processor board in a desk-top work station.

REFERENCES

[1} D. Juvin, J.L. Basille, H. Essafi, and I.Y. Latil.
SYMPATI-Z, 1 1.5 D Processor Array for Image
Applicatien. In Signal Processing 1V: Theories and
Apllications, Elsevier Science Publishers B.V.
{North Holland), 1988.

{2] XK. Preston. The Abingden Cross Benchmark
Survey. IEEE Computer, pages 9-18, July 1989.

[3] L.A. Schmiu and §.8. Wilson. The AIS-5000
Parallel Processor. Io Pattern Anzalysis and
Machine Intelligence, 1987.

[4] I.T. Kuehn, H.J. Siegel, and D.L. Tucmencksa. The
use and design of PASM. In Integrated Technclegy
for Parallel [mage Processing, ed. 5. Levialdi,
Academic Press, pages 133-152, London, 1985,

5] I. Houzet and A, Fatoi. A 1-I) linearly expandable
interconnection network performance analysis.
IEEE Int. Conf. on Application Specific Array
Proceszors, papes 572-582, Venise Italy. October
1993.

[6] S. Borkar et al. Supporting Systolic and Memory
Communications in iWarp. ACM Int. Symp. on
Computer Architecture, pages 70-81, Seattle, may
1990.

[7] J.G.E. Qlk end P.P. Jonker. A Programming and
Simulation Model of a SIMD-MIMD Architecture
for Image processing. In JEEE CAMP9S
Workshop, pages 98-105, Italy, Sept. 1995.

[8] A. Faini and D. Heuzet. Cf/, une extension
parallgle du C pour machines multiprocesseurs.
RenPar'7. Mons Belgique, Jain 1995,

[Ed| R.P. Rogers, 1.G. MacDuff, and §.L.. Tanimecto.
Systolic Cellular Logic: Architecture and
Performance Evaluation. In IEEE CAMP'9S
Workshop, pages 51-58, Ttaly, Sept. 1995,

[10] H.N. Kim, M.J. lrwin, and R.M. Owens. MGAFP
Applications in Machine Perception. In IEEE
CAMP'95 Workshop, pages 67-73, lialy, Sepi.
1995.

[11] T. Blank. The MasPar MP-1 Architecture. In 35th
IEEE COMPCON Spring'90 Proc.. pages 20-24,
Feb. 1590.

[12] Kendall Square Research. KSR1 Principles of
Operation. Waltham, MA, 1991,

[13] L.M. Ni and P.K. McKinley. A Survey of
Wormhole Routing Techniques in Direct Networks.
IEEE Computer, pages 62-76, 1993,

[14] M.C. Herbordt and C.C. Weems. Tewards the
Empirical Design of Massively Parallel Arrays for
spatially Mapped Applications. In IEEE CAMP'95
Workshop. pages 55-66. Sept. 1995,

[15] Xilinx, "The Programmable Gale Array Data
Book,” 1994,

