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ABSTRACT
A novel approach is proposed for

overcoming the multiple minima problem,
present in the learning of a supervised
neural network. It allows to connect rational
function approximations to neural networks
and is based on the use of a truncated
Fourier expansion for determining: 1) the
architecture; 2) the parameters of the net,
avoiding local minima in an efficient way.

1 INTRODUCTION
When determining a neural network for

realizing an unknown mapping through

examples, a very difficult problem is to
overcome the multiple minima present in the
objective function. A possible solution is to
use a unimodal objective function. However,
this solution usually yields poor
approximations of the mapping, since it
does not rely on an efficient algorithm. In the
present work we follow for this purpose a
recent approach which allows to connect
rational function approximations to neural
networks [1]. The connection regards the
class of neural networks constituted by a
single hidden layer of N sigmoidal neurons,
as shown in Fig. 1.
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Fig. 1: Class of neural networks considered in [1]. The box represents a sigmoidal activation
function.

The output of this network is given by
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In terms of a transformed input variable
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the output of the neural network becomes a
rational function, i.e.:
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Function H(z) is characterized by positive
real distinct poles; the synapses ci coincide
with their residues.
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Fig. 2: Neural network based on Fourier rational approximant.

2 THE PROPOSED ARCHITECTURE
The neural network of Fig. 1 only realizes

a limited class of rational functions. In fact,
optimal rational approximants of a given
function may possess multiple complex
poles. Consequently, more general schemes
of neural networks should be provided in
order to take advantage of the said
connection. To any specific algorithm
available for the rational approximation, a
particular architecture corresponds.

We will illustrate this correspondence by
applying an algorithm based on Fourier
series expansion. The result will be a novel
architecture for the neural network.

Let f(x) {x,f(x)∈ R} be the function to be
approximated. By replacing x for

(4) w tan= −2 1 e x

function f(x) becomes a function g(w)
defined in the range 0÷π. Outside this range,

it is convenient to consider g(w) as an even
periodic function with period equal to 2π.
Its Fourier series, truncated to the M-th
harmonic, is equal to
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having introduced the Chebyshev
polynomial Ck(.) of order k. Hence, by using
(6) and taking account of (2), formula (5)
becomes:
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Function G(z) is the resulting rational
approximant. The values Bj are obtained
from a simple Fourier series expansion and
from the coefficients of Chebyshev
polynomials, available in any mathematical

handbook. Formula (7) corresponds to the
neural network of Fig. 2, which simply
coincides with a linear combiner driven by
the successive powers of the input,
predistorted by passing through a neuron
having a sigmoidal activation function.

The learning of this network is without
difficulty, since it can be based on a
quadratic error function. Moreover, the
resulting network is efficient since it is based
on Fourier expansion.
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