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Abstract

The enhanced method for the estimation of a Doppler
frequency which is dealt with aims at achieving a real time
measure of the movements of a vebicule, given an on-
board configuration of microwave Radar sensors. The
prime idea is that the Doppler frequency can be
assimilated to the mean instantanecus frequency of the
signal. Then this frequency is estimated using the first
moment of a quadratic time-frequency distribution. The
enhancing process of the method is involved both in a
specific preprocessing of the distribution so as to capture
a reliable signal information, and in a weighted rejection
of the higher variance components, likely to be
meaningless. Simulations, as well as preliminary real
tests, show probative results.

1 INTRODUCTION

In order o formulate the signal processing problem, let us
introduce the basic concepts which govern the generation
of the signal. Given a microwave Doppler sensor and the
geometry of its arrangement beneath the vehicule (fig.1),
the frequency contribution fgi in the signal power
specirum, resulting from a ©j incidence angle within the
antenna beam, is proportional to the speed v accordingly
to the relationship {1).

fqi =2 cos & 1y
A

A: freespace wavelength
Assuming propitious working conditions for the Doppler
sensor [1], the spectral distribution may be characterized
by a gaussian shape centered around fy, and a bandwidth

Afq given by (2).
Afg = Zi[cos(e AZB;] - cos(e +Aé@~]] @)

Moreover, from (1) and (2), it can be derived that the
relative bandwidth only depends upon the beamwidth AG

and the inclination angle © of the antenna.
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Such a favourable case, illustrated hereafier by a real power
spectrum (fig.2}, has given rise to a lot of estimation
methods of the Doppler frequency {(here denoted "Df" in
gbbreviated general form). Implicitely the Df is often
defined as being representative of the "central frequency”
of the lobe.

Within the framework of time methods the Df is derived
from the mean number of Zero-Crossings of the signal
which occur during a measurement time T.

Dealing with parametric methods, the AR model is proved
suitable [2]. Further investigations, with regard to the
order of the model and the choice of the estimalor itself,
can lead to a convincing implementation [3}.
Unfortunately these methods become unfounded seeing
that the power spectrum deviates from the ideal case, as
illustrated by the figure 3. Depending upon the scattering
surface characteristics (ground material, roughness of Lhe
surface, wetness,...) and also possible interferences, ihe
power spectrum may exhibit unexpected sidelobes (fig. 3-
a). Moreover, the vehicule vibrations, combined with the
proper 1/f noise of the antenna, can cause a relatively
high power density at low frequencies (fig. 3-b). In such
conditions, clearly the estimation of the Df must be
derived from the usefull lobe of the spectrum, disregarding
the undesired regions. Comnsequently, the estimation is
based on the spectral data, and involves a robust
preprocessing. These peints are developed within the
following sections. Section 2 sets the principles of an
Instanianeous Frequency based estimation, while the
enhancing process is outlined in section 3. The fact that
the uncertainty of the estimate both depends upon the
observation time and the SNR is common to any method,
but this discussion goes beyond the limits of the present

paper.
2  BASES OF THE ESTIMATION

Fundamentally, it is postulated that the Df is the mean
instantancous frequency of the signal. Such a definition
lends itself to a formal expression, and remains consistent
with the original principle, more or less intuitive, which
consists in deriving the Df from mean frequency of Zero-
Crossings of the signal.

Like the Fourier frequency is associated to the Fourier
Transform, the instantaneous frequency IF is associated to



the Hitbert Transform [4]. Let x(t) the real Doppler signal,
Z{t) its analytic counterpart, and the Parseval equality
assumption which is expressed below.

+oo +oo
x =J lz(t) * dt =I IX(vi? dv

In the time domain the normalized mean instantaneous
frequency, denoted vim, conforms to the following
relationship.

oo
Vim = i-[ vit) Jzi) 2 de

o

(4)

On the other hand, in the Fourier domain, the "central
frequency” can be defined objectively as the mean Fourier

frequency vy, which therefore produces the variance C:

oo
C=lj v-vm X2 av (5
xX J0

Minimizing (5) yields:

oo
vy = 2 J v X% av (6)
% Jo

The underlying exact relationship between Vi, and vy, is:
Vim =¥m M

Relationships similar to (4) and (6) can be derived for N-
samples discrete signals and discrete spectra [S)
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However (7) still holds only if the module of z(n) is
constant, or (o a certain extent, slowly lime-varying.

We extend these concepts to the definition of a DF at ime
, denoted fg(n), by substitution in (9} of X(k} by the
Short Time Fourier Transform X(n.k). In that case, it must
be noted that fg(n) is akin to the smoothed Discrete
Instantaneous Frequency estimator which would be derived
from the first moment of a Cohen's class Time Frequency
Distribution, and especially the Wigner Ville Pseudo
distribution [6].

3 ENHANCED ESTIMATION

For further simplicity of notations let
Y(nk) ={Xn,k) 2

In practice Y{nk) results from an averaging of time-
shifted spectrograms {10), consistently with the quasi-
stationarity property of the signal, and in accordance with
the bias, the variance, and the time resolution required for
the Df estimate.

P-1|N-1 . 2
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w: real weigthing window

The measurement time T is submitted to a constant product
Afg . T criterium, and then aims at being adaptive, as
indaced by (3). Through (10) the time T can be controlled
by the length N of the window, the number P of windows,
and the shifting parameter R.

Essentially, the enhancing process lies in a filtering
operation of the signal, so as to reject in the Time-
Frequency representation the low frequency noise and
vibrations effects, as well as the emergent sidelobes
which interfer with the main one. This means that the Df
will be calculated by (11), assuming that an optimal
bandwidth, bounded by indexes kL and ki, can be
determined beforehand.

k1 jonk
fgmy=-L-ag T Yk (D
2R k=ky_

Furthermore, we propose to improve the practice of (11)
by implementing a weighted rejection of the higher
variance components of Y(nk). These two concepls are
presented hereafter.

3.1 Capture of the useful bandwlidth

Accessing indexes kL and kH proceed from a four step

approach, given below.
a)-Computation of a smoothed counterpart Yg(nk) of
the logarithmic representation of Y(n.k). Subsequently,
every logarithmic quantity is indexed "log".
b)-Detection of the peak Y g(n,k0) of Ye(nk).
¢)-Identification of a low frequency Signal-Noise
discriminating threshold E[(n).
d)-Identification of a high frequency
discriminating threshold EH(n).

sidelobe

Dealing with the smoothing problem, the Wavelet
Transform presents an innovating way which we have
considered of interest [7,8]. Nevertheless, thresholding of
the wavelet coefficients is not easily contrellable, and
therefore does not allow really robust results as for as kKL
and kH. As it is, for the present application, a
conventional smoothing method, as specified by the
relationship (12), is proved more appropriate, ali the
more the length of the normalized smoothing window §
(i.e. Hamming window) can be made adaptive, thus taking
into account (3).

Ys(log)(nk) =f Yilog)(nl) Sk-1 (12}

Searching for the index kQ of the peak Yg{nk0) is a trivial
problem which first of all aims at pointing the useful
lobe, even if incidently it provides a rough estimate of
fq(n) [4]. The possible uncertainty of the measure of ko
does not induce shortcomings of the final estimate,



The noise density level at low frequencies is calculated by
(13), the upper index k] being previously derived from (3)
and {14).
ki-1
Em=t I Yok 3
k1 k=0

k] = im{ko (1- a%i)} (14)
d

o coefficient

The discriminating threshold EH{n) is based on the
detection of a critical change in the slope of Yg(nk). The
criterium we introduce is expressed by (15).

M

C(nk) = sgn 1331 {Ys(log)(nk} - Ys(log)(n.kﬂ)]] (15)

Practically, the parameter M is adjusted so as to avoid
both wrong detections which would be due to the variance
of Yg(n,k) and missing right detection of interfering
emergent sidelobes. The first occurence of a negative
value of C(nk) in the searching process gives the index
k7 and the threshold EH (n)= Yg(n k2 ).

A unique reference discriminating threshold E(n) is then
obtained by the rule (16),

E(n) =max {EL(m), Egm)}  (16)

leading to indexes kI, and kH, as verifying the best
approximation of (17).

Ysin, kLY = Yg(n, ky) = E(}  (17)

3.2 Rejection of bursts

High scatiered samples, indeed meaningless, may be
present in the spectrogram, evenm within the range
[kL.kH], which are likely to degrade the accuracy (bias,
variance) of the estimate of f4(n). Such bursts are detected
by comparing the error e(nk) to the standard deviation

o(n), which qoantities are defined by (18) and (19},

e(nk) == YnX - Yg(n, k) (18)
- 17}
om=]—L—— I e2(mk) (19)

kpp -k + 1 k=kj,

Then a reduction of the incidence of these suspect samples
on the estimate of fq(n) can be expected seeing that
Y{nk), in (11}, is replaced by a weighted counterpart
Y w(n.k). The weighting rule is as follows.

Yyduk) = Y(nk) ifle(nk)som) (20-3)
A(nx) = sgnf{e(nk)} (1-1) o@) + X e(nk)
Ywink)= Ysnk) + Ank) {20-b)

The parameter A, within the range [0,1], controls the
weighting operation.

4 RESULTS

An objective assessment lies on the comparison of a Df
estimate to a Df reference, as far as this reference can be
known. At present, field tests at our disposal do not meet
this condition, s0 we resort to a dedicated test bench using
synthetic signals. The test Doppler signal generator
which has been achieved conforms the spectral density of
an input white noise to a template, characterized by [,

Afg, EL, and to an interfering sidelobe (f, Af, EH). An
additive gaussian white noise assigns the expected Signal-
Noise Ratio.
Refering to the section 3, the processing parameters and
test conditions are listed below.

Sampling frequency: 4 KHz

w, 8: Hamming windows

P=3

R =400

Afg /4 =08 (- 6dB)
The test conditions, in terms of dicriminating thresholds,
are not the more adverse possible,

E(n) ~ EL(n} = Eg{n)

Ys(nko) - E(n) =10dB
but they keep sense for a comparative analysis between
the TF based estimation and a AR estimation (order 2,
modified covariance estimator) {3].
A significant set of averaged estimates is written down in
the following table.

reference Df estimate (He)

bt (tz) enhanced IF based AR

i method method

E’SNR —»| 30dB | 154B | SdB 30 dB
50 54.2 54.2 54.2
150 1533 1533 | 153.1 111
250 2533 | 2533 | 2535 || 260
350 3546 | 3545 | 3547 || 363
450 4550 | asae | 4552 || 463
550 5570 | 5568 | 5575 || s81
650 6519 | 6520 | 6508 | 656
750 7517 | 7514 | 7516 | 749
850 8524 | 8531 | 8524 |l 848
950 9502 | 950.1 | 9469 | 939
1050 10505 | 10493 | 10484 || 1024
1150 11473 | 11469 | 11464 || 1116
1250 12513 | 12521 | 12489 || 1202
1350 13491 | 13496 | 13454 || 1289
1450 14471 | 14478 | 14455 || 1369

The enhanced IF based method confirms to perform quite
right, even at relatively low SNR, and especially if it
would be compared to the application of the relationship
(9) just as it stands, and a-fortiori if it is compared to a
basic AR parametric method which besides does not
tolerate low SNR.



5 CONCLUSION

This work contributes to prove that the instantaneous
frequency concept is really appropriate to the definition of
a Doppler frequency. The formal expression of the mean
instantaneous frequency, which is based on the first
moment of a time-frequency representation, lends itself to
taking into account properties inherent to the signal
generator, especially to the transducer (i.e. microwave
sensor) and its environment. This ability is potentially of
great interest for a lot of application fields. In return,
compared to parametric approaches, the induced
computational cost could be discussed, but the availability
of powerful Digital Signal Processors moderates this
disadvantage.
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Figure 1. Geometry of the microwave beam
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Figure 2. A basic Doppler signal spectrum
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Figure 3. Impairments in the Doppler signal spectrum
(3-a): interference sidelobe
(3-b): high PSD at low frequencies




