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Département Signal & Image

Institut National des T´elécommunications
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ABSTRACT

We present an analytic solution to the past input reconstruc-
tion problem, which consists in describing all past input se-
quences which would give rise to a given set of variables
in fast least-squares algorithms, whenever the variables in
question are reachable.

1 INTRODUCTION

Letuk be a sequence of row vectors, each withM+1 elements,
and stack these one atop another to build a data matrixU(n),
with un as the top row. WithΛ(n) = diag[1,λ , . . . ,λ n], recur-
sive least-squares filtering algorithms often invole the time-
propagation of the covariance matrixP(n) = Ut (n)Λ(n)U(n),
or its inverse, or its Cholesky factor, etc. Fast least-squares al-
gorithms may be developed when the vectorsun derive from
a delay line, and the resulting algorithms feature orderM
complexity in both storage and computation. The matrix re-
cursions involvingP(n) are replaced by a prediction section,
which takes the form of a time-recursive computation

ξ (n) = T [ξ (n−1),un]

in which un is a scalar input sample,ξ (⋅) is the state vector
which collects all variables that need be written for storage,
andT [⋅, ⋅] is a nonlinear map which implements the fast least-
squares prediction subroutine at each time iteration.

Suppose the past inputun, un−1, un−2 . . . , is allowed to
vary arbitrarily, and letSi be the set of state variablesξ (n)
that are reachable in exact arithmetic. It is known [1]–[3]
that unstable error propagation is possible only if the finite
precision version ofξ (⋅) exitsSi, so thatSi furnishes a stability
domain. Deducing necessary conditions for a candidate state
ξ (⋅) to belong toSi involved exploiting known least-squares
consistency conditions [2], [3]; showing these conditions to
be sufficient involved further labor [4]. But by definition
of Si, if a given stateξ (⋅) is indeed reachable, then it must
be possible to place in evidence some past input sequence
un, un−1, un−2 . . . , which gives rise to this state. We solve
here the past input reconstruction problem, which consists in
describing all valid past inputs for a given state, whenever
the state is reachable. This complements the stability domain
concept initiated in [1].

2 PROBLEM STRUCTURE

In fast least-squares algorithms the input vector derives from
a scalar sequence passed through a delay line:

un = [un un−1 ⋅ ⋅ ⋅ un−M].

If un = 0 for n < 0, the matrixU(n) then assumes a “prewin-
dowed” Hankel structure:
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Let us introduce the correlation lags

rk =
nX

i =0

un−i un−i−k, k = 0,1, . . . ,M, (2)

and likewise rename the most recent input samples as

x1 = un, x2 = un−1, . . . xM = un−M+1. (3)

Then for anyn, one may check that the gramian ofU(n),
usingλ = 1, takes the form

P(n) = Ut(n)U(n)

=
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(4)

The matrixP(n) is completely specified by 2M +1 values,
namelyr0, . . . , rM andx1 . . . , xM.

When using a forgetting factorλ , with λ < 1, the matrix
P(n) becomes

P(n) = Ut (n)Λ(n)U(n) (5)

SetL = diag[1,λ1/2, . . . ,λM/2]; sinceU(n) is a Hankel matrix,

Λ1/2(n)U(n) = U(n)L−1



in which U(n) is a Hankel matrix akin to (1), but built from
the sequence

ūn−k = λ k/2 un−k. (6)

As such, the matrixP(n) from (5), once multiplied from the
left and right by the matrixL, will assume the same structure
as if λ = 1 had been used [cf. (4)], and the past input had
been exponentially weighted, as in (6). As this removes the
influence ofλ , we may setλ = 1 with no loss of generality.

We now review more common parametrizations ofP(n).

2.1 Fast Transversal Filters
The fast transversal equations (with their many variants) are
well defined only whenP(n) is invertible. The inverseP−1

(time indexn suppressed) has low displacement rank accord-
ing to [2]�
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in which the vectorsAM, BM, andCM contain, respectively,
normalized versions of the forward prediction error filter, the
backward prediction error filter, and the Kalman gain vector.
We refer to Slock [2] for more detail. These algorithms
perform time updates not on the matrixP−1(n), but on the
corresponding generator vectorsAM(n), BM(n), andCM(n);
these variables in turn yield the state vectorξ (n).

2.2 Order Recursive Algorithms
SupposeP is truncated to its (k+1)× (k+1) principal subma-
trix; the resulting matrix, once inverted and displaced akin
to (7), yields generator vectorsAk, Bk, andCk, each ofk +1
elements. For any orderk, set

Ak(z) = [1 z ⋅ ⋅ ⋅ zk] Ak

Bk(z) = [1 z ⋅ ⋅ ⋅ zk] Bk

Ck(z) = [1 z ⋅ ⋅ ⋅ zk] Ck

These polynomials (evaluated at a common time indexn) are
known to be related by the order recursion [5]

	Ak+1(z)
Ck+1(z)
Bk+1(z)
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(8)

in which sinφk is the correlation coefficient between the nor-
malized forward and backward prediction errors of degreek;
and sinθk is the angle normalized backward prediction error
of degreek, divided by the square-root of the corresponding
backward prediction error energy. These rotation angles ap-
pear in fast QR algorithm studied in [3], yielding the state
vector ξ (n), and many other variants may be found in fast
QR/lattice algorithms [5]–[7].

2.3 Shift Invariance
Suppose the parameter values {rk} M

k=0 and {xk} M
k=1 are reach-

able at timen, i.e., there exists some input sequence {ui} n
i=0

fulfilling (2) and (3). Then these same values are reachable
at timen+1, by applying a causal shift to the input sequence.
Conversely, any parameter set {rk} M

k=0 and {xk} M
k=1 reachable

at timen+1 is also reachable at timen, provided the start-
ing time is pushed back toi = −1. The set ofasymptotically
reachable parameters may be understood as those reachable
by fixing the starting time ati = 0 and letting the final time
extend ton = +�, or equivalently, by fixing the final time to
n = −1 and letting the starting time extend back toi = −�.

Upon adopting the latter convention, thez-transform of any
valid past input sequence takes the form

U(z) =
�X
i =1

u−i z
i, jzj < 1, (9)

which yields a function analytic injzj < 1. Moreover, the
set of parameters {rk} and {xk} reachable at timen = −1
corresponds precisely to the set of valid initial conditions
for the fast least-squares algorithm to proceed correctly from
time n = 0 onward. The past input reconstruction problem is
then:

Problem 1 Given the structured matrix
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find all anti-causal functions as in (9) which satisfy the inter-
polation conditions

u−k = xk, k = 1,2, . . . ,M; (10)
�X
i =1

u−i u−i−k = rk, k = 0,1, . . . ,M. (11)

This problem first arose in model reduction in Mullis and
Roberts [8]; see also [9] and [10]. These works claim that
a solution exists if and only ifP(−1) is nonnegative definite.
Connections to classical interpolation theory surfaced in [11]
and [12], from which one may show that a solution need not
exist whenP(−1) is positive semi-definite.

3 A RELATED INTERPOLATION PROBLEM

LetZ be the shift matrix with ones on the subdiagonal and ze-
ros elsewhere. The matrixP(−1) has low displacement rank,
and its displacement residueP(−1)−ZP(−1)Zt becomes

P(−1)−ZP(−1)Zt =
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where “[⋅]” means “repeat the previous vector”. Now, behind
most any displacement structure lurks an interpolation prob-
lem [13], [14]; that corresponding to (12) may be introduced
as follows.

Let S(z) be a 2×1 vector-valued Schur function, meaning
thatS(z) is analytic injzj < 1 and contractive, i.e.,kS(z)k < 1
in jzj < 1, wherek ⋅k denotes the Euclidean norm. Let us set

a(z)
∆=
p

r0 +
r1p
r0

z + ⋅ ⋅ ⋅ +
rMp

r0
zM, (13)

as well as
� c(z)

b(z)

�
= S(z)a(z). We then have:

Problem 2 Given the parameters { rk} M
k=0 and { xk} M

k=1, find
a Schur function S(z) such that the resulting b(z) and c(z)
assume the forms

c(z) = 0+x1z +x2z2 + ⋅ ⋅ ⋅ +xMzM +O1(zM+1) (14)

b(z) = 0+
r1p
r0

z + ⋅ ⋅ ⋅ +
rMp

r0
zM +O2(zM+1) (15)

where O(zM+1) denotes a function analytic in jzj < 1 which
vanishes M +1 times at z = 0.

This problem admits a solutionS(z) if and only if a certain
Pick matrix is nonnegative definite [15]; that corresponding
to the present problem is simplyP(−1) from (12).

Sinceb(z) and c(z) both vanish atz = 0, while a(z) does
not, we see that any solutionS(z) to Problem 2 must vanish at
z = 0. This allows us to writeS(z) =

� zS1(z)
zS2(z)

�
. It is known [15]

that whenever solutions exist, then lossless solutions exist,
where lossless refers to a Schur function which has unit norm
along the unit circlez = e jω:

jS1(ejω)j2 + jS2(ejω)j2 = 1, for all ω. (16)

Proposition 3 Let S(z) be a lossless solution to Problem 2.
If the resulting zS2(z) obeys the constraint

1−zS2(z) ≠ 0, for all jzj = 1, (17)

then the function

U(z) =
p

r0
zS1(z)

1−zS2(z)
(18)

is a solution to Problem 1. Moreover, all solutions to Prob-
lem 1 may be generated in this way.

For a proof, see [11]. In case (17) is violated, i.e.,
ejω0S2(ejω0) = 1 for some valueω0, then (16) givesS1(ejω0 ) =
0, producing a pole-zero cancellation on the unit circle in
U(z). This possibility did not appear in [8]–[10], which ex-
plains the shortcoming of their claimed sufficient conditions.

4 CONSTRUCTING S(z)

Solutions to Problem 2 may be constructed by using a Schur
algorithm; that to follow is adapted from [16].

We begin with the data array

G =

	pr0 r1/pr0 r2/pr0 ⋅ ⋅ ⋅ rM/pr0

0 x1 x2 ⋅ ⋅ ⋅ xM

0 r1/pr0 r2/pr0 ⋅ ⋅ ⋅ rM/pr0



, (19)

which contains the leading terms of the functionsa(z), c(z),
andb(z) from (13), (15), and (14).

1. Shift the first row of the array (19) one position to the
right:

(19)
z

→

	0
p

r0 r1/
p

r0 ⋅ ⋅ ⋅ rM−1/pr0

0 x1 x2 ⋅ ⋅ ⋅ xM

0 r1/pr0 r2/
p

r0 ⋅ ⋅ ⋅ rM/pr0



.

2. Choose a hyperbolic rotation to knock off the second
element of the first nonzero column. In the first pass,
this appears as	 1/cosθ0 sinθ0/cosθ0

sinθ0/cosθ0 1/cosθ0

1




×

	0
p

r0 r1/
p

r0 ⋅ ⋅ ⋅ rM−1/pr0

0 x1 x2 ⋅ ⋅ ⋅ xM

0 r1/pr0 r2/
p

r0 ⋅ ⋅ ⋅ rM/pr0




=

	0 y1 × ⋅ ⋅ ⋅ ×
0 0 × ⋅ ⋅ ⋅ ×
0 r1/pr0 r2/pr0 ⋅ ⋅ ⋅ rM/pr0



,

in whichy1 =
p

r0 −x2
1 and sinθ0 = −x1/pr0.

3. Choose a hyperbolic rotation to knock off the third ele-
ment of the first nonzero column. In the first pass, this
appears as	 1/cosφ0 sinφ0/cosφ0

1
sinφ0/cosφ0 1/cosφ0




×

	0 y1 × ⋅ ⋅ ⋅ ×
0 0 × ⋅ ⋅ ⋅ ×
0 r1/pr0 r2/pr0 ⋅ ⋅ ⋅ rM/pr0




=

	0 y2 × ⋅ ⋅ ⋅ ×
0 0 × ⋅ ⋅ ⋅ ×
0 0 × ⋅ ⋅ ⋅ ×



, (20)

in whichy2 =
p

y2
1 − (r2

1/r0) and sinφ0 = −(r1/
p

r0)/y1.

4. Replace the array (19) with (20) and reiterate the above
M−1 times, to eliminate all the elements of the second
and third rows.

This procedure continuesM full iterations yielding
jsinθkj < 1 andjsinφkj < 1 if and only if the matrixP(−1)
is positive definite [16]. IfP(−1) is positive semi-definite,
of rank k < M+1, the procedure terminates afterk stages,
yieldingjsinθk−1j = 1 or jsinφk−1j = 1 [16].

A flowgraph of this operation for the positive definite case,
applied to the functionsa(z), c(z), andb(z), appears in Figure
1, for the caseM = 3. Each successive stage introduces an-
other leading zero into the three functions. The flowgraph of
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Figure 1: Illustrating the Schur algorithm, forM = 3.
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Figure 2: Redrawing of Figure 1, using planar rotations.

Figure 1 can be rearranged into that of Figure 2, by reversing
the flow direction of the two lower branches; the relations be-
tween the various intermediate signals appearing in Figures
1 and 2 are preserved. Upon closing the right-hand port in a
lossless load, according to�

cM(z)
bM(z)

�
= zSL(z)aM(z),

the resulting function mappinga(z) to
� c(z)

b(z)

�
is lossless, and

all lossless solutions to Problem 2 are exhausted by varying
SL(z) over all lossless possibilities (e.g., [15]). A realization
of U(z) as per (18), finally, is obtained by closing the input
port and scaling the remaining output, as in Figure 3.

We now relate the rotation angles in Figure 2 to the state
variables of fast least-squares algorithms. The following
identity may be attributed to Lev-Ariet al. [5]:

Identity 4 The rotation angles { θk} and { φk} of the order
recursion (8) are precisely the angles determined from the
above Schur algorithm.

These angles make an explicit appearance in, e.g., the fast
QR algorithm studied in [3],1 and can be inferred from other
minimal lattice and QR algorithms (e.g., [5], [6], [7]).

This then specifies the fixed rotation angles buildingΣ(z)
in Figure 3. As for the lossless loadSL(z), the simplest choice
is a constant:SL =

� sinα
cosα

�
, whereα may be varied freely. If

P(−1) is positive definite, then one may show that finitely
many values ofα exist for which the realization of Figure 3
may lose observability or controllability, and thus a contin-
uum of values exists for which the realization is minimal (no
pole-zero cancellation). Any such value ofα must give a
zS2(z) for which (17) is satisfied.

1The anglesθk in Figure 2 are precisely those of [3], but the anglesφk
are denoted byφk+1 in [3]. The index onφ is decremented in this paper so
that rotations within a common section of Figure 2 take the same index.

z

Σ(z) SL(z)

z
S1(z)

S2(z)r0

1

U(z)

S(z)input load

Figure 3: Closing the loop to realize the functionU(z).
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