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ABSTRACT

In this paper a new variation of Hough Transform is pro-
posed. It can be used to detect shapes or curves in an
image, with better accuracy, especially in noisy images.
It is based on a fuzzy split of the Hough Transform pa-
rameter space. The parameter space is split into fuzzy
cells which are defined as fuzzy numbers. This fuzzy
split of the parameter space provides the advantage to
use the uncertainty of the contour points location, which
is increased when noisy images have to be used. More-
over the computation time is slightly increased by this
method, in comparison with classical Hough Transform.

1 INTRODUCTION

The Hough Transform (HT) [2] is a technique of funda-
mental importance for many applications in image pro-
cessing and computer vision. It can be used to detect
straight lines or circles in an image and can be general-
ized to detect an arbitrary shape at a given orientation
and a given scale.

In this paper, we propose a novel method called Fuzzy
Cell Hough Transform (FCHT), based on a fuzzy split of
the Hough Transform parameter space into fuzzy cells.
Each fuzzy cell is defined as a fuzzy set with a mem-
bership function p(ai,as,...,a,) of p parameters. By
using this fuzzy split, fuzziness is inserted to decisions
through a fuzzy voting process. Each contour point in
the spatial domain contributes with different voting val-
ues, in more than one fuzzy cell in the parameter space.
The array that is created after the fuzzy voting process
is smoother than in the classical case and the curves
are estimated with better accuracy, especially when the
images are corrupted by noise.

In the following we shall present the definitions of
fuzzy cells in a three dimensional parameter space and
will be generalized for a p-dimensional parameter space.
Then, the corresponding fuzzy voting process for the
detection of circles in an image will be described. Last,
experimental results of the use of the proposed method
will be presented and compared with classical Hough
and Fuzzy Hough Transform (FHT) [1].
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2 DEFINITION OF FUZZY CELLS

2.1 Definition of fuzzy cells for circle detection

Let us assume that a circle in a N x N image 1s to be
detected by using the conventional HT. Since three pa-
rameters are needed to define any circle, the space that
is used in HT is a three dimensional space. The param-
eters which are usually used are the coordinates of the
circle center a,b and the radius . When HT is applied
the parameter space has to be split in a finite number
of cells. Let us assume that the three dimensional pa-
rameter space is split in N, x Ny x N, cells. The crisp
cell Cy;1 can be defined as:

Cijk‘:{(aabar)aaEAiabEBj’rERk} (1)

where A;, B; and Ry are classical sets.

In order to define fuzzy cells each point which belongs
to the interval of confidence of the fuzzy cell corresponds
to a value in [0, 1] through its membership function. By
using the assumption that N, is the number of partitions
of parameter a, the fuzzy sets in coordinate a can be
defined by the following equation:

4 = {(a,ys(a)), a € R). (2)

where g, (a) is a membership function. Then, a fuzzy-

a cell F;;,; can be defined as a fuzzy number with three
variables:

Fi(}k = {((a’b’r)’/’LF,ajk(a’bar))a(aabﬂ“)E RS} (3)
where

pasr(a) ifbe Bjand re Ry

e, (a0 = { § ()

elsewhere
The same technique can be used to split b and r coordi-
nate in fuzzy sets and similarly define the corresponding
fuzzy-b Fll}k and fuzzy-r Fly, cells.

If the fuzzy partitions in two coordinates, for example
a and b, are combined then a fuzzy-ab cell can be defined

as the following fuzzy number:

FZ% ={((a,0, T),upgﬁ(a, b,r)),(a,b, 1) € R3} (5)



where

min a), b ifreR
/,LFab (Cl b T’): (/’LA{( ) /‘LB]f( )) k
0 elsewhere
(6)
Similarly fuzzy-ar, fuzzy-br cells and fuzzy-abr cells can
be defined. Fuzzy cells can also easily be defined in
a restricted two dimensional parameter space for the
detection of straight lines.

2.2 Definition of p-dimensional fuzzy cells

The concept of a fuzzy cell can be generalized, for the
detection of any curve that can be described with p pa-
rameters, in a p-dimensional parameter space as follows.
The parameters used are symbolized as a;, 1 = 1,2,...p
and each parameter range is divided in N,, fuzzy sets
symbolized as:

Af, = {(aia/’LAf (ai))aai € R} (7)
where i = 1,2,...,p, ji = 1,2,..., Ng, a,nd/,LAf(i)iS

a membership function. The fuzzy sets can be com-
bined to define different kinds of fuzzy cells in the p-
dimensional parameter space. In the general case, a
fuzzy cell can be defined as:

FP = an, . oap), il (a1, . ap)), (a1,...ap) € RP}
(8)
where
ﬂ§1,...jp(a1""ap) :min(ﬂA§1a~~~ﬂA§ ) (9)
P

is the membership function of the p dimensional fuzzy
cell.

3 DESCRIPTION OF THE FUZZY VOTING
PROCESS

Let us assume that a pixel x,y is a contour point in
an 1mage and that the parameter space is split in N, x
Ny x N, fuzzy-r cells F},,.. The centers a; of the crisp
sets A; and the centers b; of the crisp sets B; are used
to compute the distances r;; by solving the following
equation:
(e =)+ (=0 =7} (10)

Each point (a;, b;,r;;) belongs to more than one fuzzy
cells Fy .. The corresponding elements of the accumu-
lator array A(l,m,n) are increased by the values of the
membership functions ppr (ai, b;,7:;). Finally, the lo-
cal maxima in the array A have to be detected.

When fuzzy-ab cells are used, the voting process is
more complicated. The fuzzy numbers B; which are
symbolized by the union of their a-cuts as:

Bf = Ua [\ 64], ael0,1  (11)

’]r

and the crisp centers rj of the crisp sets Ry are used to
compute the fuzzy distances Afk by solving the following
fuzzy equation:

(x—Af

I+ (=B =i (12)

where all the operators are the extended fuzzy opera-
tors, through the extension principle. Then, the fuzzy
distances Afk which are symbolized by the union of their
a-cuts as:

Al =Ja - Taly) a3, a€[0,1] (13)

are calculated by the equations:

aﬁyl) =z — \/rg — min (14)

) _ x—\/ri —max if r? > max
]k r — Tk—max

— if r,% < max (15)
Tk—mln

where

() ()
= by =b)7)  (16)

max = max((y

b = 8w = 6), (0 = 5.
(17)
This fuzzy process provides the ability to transfer the
fuzziness of an image through the Hough Transform to
the accumulator array. The array that is created after
the fuzzy voting process is smoother than in the crisp
case. This means that local maxima which correspond
to the effect of noise in an image disappear. The circles
can now be detected with better accuracy. However,
this method slightly increases the computation time.
Figure 1 shows an example of the two dimensions a, r
of an accumulator array after a classical voting process
(a) and after a fuzzy voting process (b), when classical
Hough and Fuzzy Cell Hough Transform are applied in
an artificial generated image with one circle in it, not
corrupted by noise. The parameter space was split in 20
parts towards a, b and r coordinate in both classical and
fuzzy case. Fuzzy r-cells were used in the fuzzy case. It
is obvious that the accumulator array is smoother when
Fuzzy Cell Hough Transform is applied.

min = min((y —

4 EXPERIMENTAL RESULTS

We considered that a circle was to be detected in a
256 x 256 image. Parameters a, b, r were restricted to
the sets a € [-32,32], b € [-32,32] and » € [1,21]. The
image was corrupted by uniform noise having the range
+d pixels added to the p—dimension of a contour point
(z,y). An example of such a corrupted circle is shown in
Figure 2. Two criteria were used in order to compare the
results. The first one was the center estimation distance

error |\/a? 4+ b7 — \/a? + b?| of the detected circle cen-

ter (a, I;) to the actual one (a, b) and the second was the



radius estimation distance error |r — 7| of the detected
radius 7 to the actual one 7.

First the classical HT was used to detect the circle.
The experiment was repeated for N, = 150 different
circles and five different values of noise range. The same
circles were detected by using FHT and FCHT. In the
FCHT case fuzzy-r cells were used. Fuzzy sets were
chosen to be triangular and the upper and lower limits
were chosen to be in equal distances from the center and
equal to the distance of the centers of two neighbouring
fuzzy sets. In the FHT the fuzziness of contour points
were supposed to have the same fuzziness as in FCHT
case.

The effect of fuzziness of the chosen triangular fuzzy
sets was investigated as well. The distances of the upper
and lower limits of the fuzzy sets from the center were
increased by a factor 1.5, 2, 2.5 and 3 in comparison with
the initial case. The sum errors of the center estimation
and radius estimation error are given by:

Ne
Ea=)_l\Ja; +b7 —/af +b}] (18)
i=1

Ne
Ep = |ri — il (19)
i=1

and are presented in Tables 1 to 3 for three different
values of the noise range.

Regarding the center F; and radius estimation Ej,
FCHT has always better performance in comparison to
classical HT and better than FHT when the noise range
is relatively small. By using FCHT method in an image
without noise the center estimation error was reduced
by 11% in comparison with classical HT. The radius
estimation error was also reduced by 77%. In a noisy
image with noise range 45 pixels the center estimation
error was reduced by 5% and the radius estimation error
was reduced by 71%. When the noise range was +10
pixels the center estimation error was reduced by 23%
and the radius estimation error was reduced by 56%.

5 CONCLUSIONS

We introduced the Fuzzy Cell Hough Transform as a
method to detect curves in an image. We proposed
a fuzzy split of the Hough Transform parameter space
which led us to a fuzzy voting algorithm. Each contour
point voted with different values in more than one fuzzy
cells in the parameter space. The array that was cre-
ated after the fuzzy voting process was smoother than
in classical case. Local maxima that correspond to the
effect of noise or any kind of uncertainty disappeared.
Curves were detected with better accuracy in compar-
ison with classical Hough Transform and Fuzzy Hough
Transform.
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FHT 2 513 116 | 1117
FCHT 2 496 58 86 Figure 1: An accumulator array after a classical Hough
FHT 25 299 96 1843 Transf . daF Cell Hough
FCHT 2 as6y/ | 524/ | 86 ransform voting process (a) and a Fuzzy Cell Houg
FOT 3 193 | 94 | 2617 Transform voting process (b)
FCHT 3 514 60 87

Table 3: Sum errors E; and E, in circle center and
radius estimation and the corresponding computational
time ¢ in seconds | by using HT, FHT and FCHT method
in an image corrupted by uniform noise in the range £+10
pixels.

H Method | Fuzziness |[| Errors [ Time |

() [ B« [ E- [ t 1]
HT 17 262 | 22/
FHT 1 678 222 301
FCHT 1 698 232 86
FHT 15 632 146 675
FCHT 15 710 202 86
FHT 2 674 194 | 1129
FCHT 2 637 160 87
FHT 25 610 116 | 1892
FCHT 2.5 552 | 1164/ | 87

FHT 3 589 166 | 2645 Figure 2: An artificially generated circle in a 256 x 256

FCHT 3 551,/ | 120 88

image corrupted by uniform noise with range &5 pixels
added to the p-dimension of a contour point.




