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ABSTRACT
We consider the problem of separation of convolutive mixtures of
wideband signals impinging on an antenna of sensors focusing on
the case of interfering seismic waves. We are looking at the spec-
tral matrix filtering method. The analytical study of its resolving
power, makes it possible for us to theoretically justify its use but
even to explain its deficiencies in difficult context (waves of very
close energies or/and too near slowness for instance). But first,
this question induces us to discuss on the links between two ba-
sis: the eigenvectors one and the steering vectors one.

1. INTRODUCTION
An increasing interest has been dedicated to the problem of
separation of convolutive mixtures of wideband signals imping-
ing on an antenna of sensors. Typical examples can be found in
passive sonar, geophysics, and so on... In geophysical opera-
tions, the aims of signal processing are the separation and the
identification of waves to improve our understanding of the on-
shore. Many techniques have been developed to achieve these
purposes (Karhunen-Loeve transform, f-k and median filter,
Spectral Matrix Filtering (SMF), τ-p transform, Maximum Like-
lihood Estimator [4]). We have chosen to focus on the SMF
method [2,3,6,7]
First, we study the links that exist between two basis: on the one
hand the eigenvectors basis which is the mathematical object
given by the eigendecomposition of the spectral matrix of the
observed signals and on the other hand the steering vectors basis
which is the physical object we are interested in. We explain
how these two basis fit together. This fitting depends on differ-
ent parameters, yet, our choice was to express results versus a
geometrical criteria (i.e. the spatial coherency of waves vectors)
and the energy ratio of the sources.
Then, we are able to analytically determine the resolving power
of the SMF method, which makes it possible for us to theoreti-
cally justify its use but even to explain its deficiencies in diffi-
cult context: i.e. waves of very close energies or/and too near
slowness.

2. THEORETICAL BACKGROUND
2.1. The model
We assume an antenna composed by N sensors. The signal rk(t)
recorded on the kth sensor is a linear combination of the p de-
tected waves, plus an additive noise [8]. This noise is supposed
to be spatially and spectrally white, gaussian and independent of
the signals of interest. Its spectral density is noted σb

2 . These as-
sumptions give in the time domain:
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where * is the convolution, ai(t) is a deterministic amplitude term
(referred to as the ith wave-front) which contains no information
about the propagation, sk,i(t) describes the propagation of the ith

wave recorded on the kth sensor and bk(t) stands for the noise.
As we opted for a “multi-narrow band” approach, the study is
performed in the frequency domain: it involves that the calculus
made at a given frequency bin does not depend any more on
those made at other frequency bins. Using matrix notations,
equation (2) is obtained by Fourier Transforming equation (1):
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We use following notations:

• ( ) [ ]R v FT R t r v r vN

T
( ) ( ) ( ), , ( )= = 1 � is the (N,1) vector of

the Fourier transforms of the observations. T is the transposi-
tion operation and FT the Fourier Transform.

• O v S v a vj j j( ) ( ). ( )=  is the jth wave vector.

• [ ]S( ) ( ), , ( )v S v S vp= 1 �
 is a (N,p) matrix whose kth column

is the so-called kth steering vector expressed as:
 [ ]S v s v s vk k N k( ) ( ), , ( ), ,= 1 �

T.

The phase of its first component is assumed to be null which im-
plies that the first sensor is chosen as a reference. This conven-
tion ensures the unity of the sources. Besides, these steering
vectors describe propagation on the antenna. Under the plane
waves assumption with neither attenuation nor dispersion, the
complex gain between two sensors reduces to a pure phase term.
Such an hypothesis is commonly used in Array Processing. Be-
sides, if the antenna is assumed to be linear with regularly spaced
sensors, the propagation delay between the 1st and the mth sensor
of the kth wave-front (impinging from the direction Θk) is simply
given by:
                  τ τ πνm k k k km c m m, . .sin( ) / . /= = =∆ Θ Φ 2

where c is the sound propagation velocity and ∆ the distance
between two adjacent sensors. Thus, expression of kth  steering
vector simplifies to:
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There only remain p unknown parameters and the propagation
matrix has a Vandermonde structure. However, in the general
case, it is necessary to take into account more complex phenom-
ena to have a realistic model.

We are looking at the problem of separation of colored and co-
herent sources A (because of multi-paths propagation problems).
This fact justifies the introduction of a diagonal normalization
matrix D which ensures spectral whitening of the sources i.e. the
spectral matrix of the new sources A’(ν) is given by:
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where E[.] is the mathematical expectation.
In the same way, correlation of sources also has to be taken into
account in the equation statement by means of a matrix T. This
matrix ensures spatial whitening of the sources and satisfies the
two following conditions:
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where Ip is the (p,p) identity matrix.
Whatever S’’(v), matrix of the new steering vectors, its Singular
Values Decomposition (SVD) is given by [11]:
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where V is a unitary (N,N) matrix (i.e. V.VH  = IN ; 
H denotes

transconjugaison operator), ∆ is a (N,p) diagonal matrix whose
N-p last lines are null (it is obviously supposed that N>p), Π is a
(p,p) unitary matrix, which is parametered in our case as a prod-
uct of Givens rotation matrices (Π’), multiplied by a diagonal
matrix of pure phase terms (P) [11]. In the most simple case
which is the two waves case, its expression simplifies to:

Π Π .( , , , )

cos ( ) sin ( ).

sin ( ). cos ( )
.

( )

( )

( )

( )

θ κ ψ ψ

θ ν θ ν
θ ν θ ν

κ ν

κ ν

ψ ν

ψ ν

1 2

1

2

0

0

= ′

−



















−

P =

e

e

e

e

j

j

j

j

 (5)

It depends on four parameters which obviously vary with the fre-
quency.
Finally, introducing the expressions found in equations (3) and
(4) in equation (2), we find:
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This expression, which is the most general one, involves a large
number of matrices. Yet, we have proved in [10] that the equa-
tion statement that effectively has to be considered depends on
another stage which is the estimation of the spectral matrix Γ(v)
related to the seismic traces. In a practical case of treatment of
seismic data, the mathematical expectation is replaced by spe-
cific operators, noted ξ (.) , like spatial or frequency smoothing
[9]. Their purpose is to diminish the influence of  the terms that
are due to the interactions between different sources, making the
inversion of the spectral matrix possible. If smoothing operators
do not allow a sufficient decorrelation of the waves, the equation
statement is the one given by equation (6) which means even in
the most simple case (two waves case) a great complexity (6 pa-
rameters still have to be estimated after second order whitening

[10] to recover true waves vectors). On the contrary, a satisfying
decorrelation of waves leads to the same result as the one ob-
tained considering matrix T as a unitary one: the complexity of
the problem considerably decreases, and it is even possible to
recover the parametrisation classically used in blind separation
of independent sources [5]:
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2.2. Determination of V and  ∆
The spectral matrix of the observations is defined by:
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Equation (8) is obtained by reintroducing the parametrisation of
R that was given in equation (6). It can also be identified with the
eigendecomposition of the spectral matrix because of the unique-
ness of this one. Thus, eigendecomposition enables the determi-
nation of two of the matrices that are looked for: the p first col-
umns of matrix V are the p first eigenvectors of matrix Γ
(assuming that eigenvalues have been arranged in a descending
way). In the same way, the p largest eigenvalues λk of  Γ are re-
lated to ∆. In fact, we have:
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The eigenvectors associated with the p largest eigenvalues belong
to the same subspace (called the Signal Subspace (SS)) as the one
spanned by the p steering vectors of the desired waves. Yet,
nothing guarantees the exact fitting between these two basis. This
is obviously due to the fact that other matrices involved in the
equation statement (among which the unitary matrix Π) are not
reachable by this own treatment. We can even notice that eigen-
vectors define an orthonormal basis whereas steering vectors are
not necessarily orthogonal.
In next section, we explain how the two basis fit together, and we
quantify resolving power of the spectral matrix filtering. The
analytical calculations prove that, in most cases, treatments based
on exploitation of second order properties of received signals are
not sufficient to separate waves but enable extraction of the most
energetic one. To reach separation, treatments have to be com-
pleted. In the case of blind separation of wideband independent
sources, it means that matrix Π has to be estimated: this is
achieved by using the fact that this matrix leads to most inde-
pendent sources [1,5] in the sense of a higher order criteria. In the
case of sufficient decorrelation of waves (the equation statement
is given by eq. (7) instead of eq. (6)), blind separation of seismic
waves has been performed replacing this criteria by a local dis-
tance stationarity criteria applied on the phases of the estimated
wave vectors [10].

3.  ANALYTICAL STUDY OF SPECTRAL MATRIX FIL-
TERING

We focus on the case of two plane waves. The two vectors V1(v)
and V2(v) associated with the two largest eigenvalues λ1 and λ2

have to be analytically calculated. To reach this purpose, we ex-
ploit the two following properties: these vectors are eigenvectors
of matrix Γ(v) (equation 10) and they are linear combination of
steering vectors because of their belonging to the SS (equation
11):
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where c c d d1 2 1 2, , ,  are complex numbers.
This set of hypothesis leads to the following system:
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where Pai  = ′Si
H. ′Si = || ′Si ||2. The whole calculus is presented in

the most simple case: we suppose that the decorrelation stage has
been reached (αi j, = 0 ).

To solve the system given by equation (12), different cases have
to be distinguished:

(i) Waves are geometrically orthogonal (i.e. ′ ′S S1 2. H=0) but

sources have different energies, then the eigenvector which is as-
sociated with the largest eigenvalue is collinear to the steering
vector of the most energetic wave, and the eigenvector associated
with the second eigenvalue is collinear to the steering vector of
the less energetic wave. This appears in equation (13). The treat-
ment is completed at the end of the second order stage to the ex-
tent that the found basis already coincides with the wanted basis :

      
λ σ

λ σ
1

2
1 1 1 1

2
2

2 2 2 2

1

1

= + = ′

= + = ′







b

b

Pa V Pa S

Pa V Pa S

; ( / ).

; ( / ).
                (13)

(ii) The case of orthogonal waves with the same energy is a sin-
gular one. Eigenvalues are found to be always identical. What-
ever the vector belonging to the space spanned by steering vec-
tors, it is an eigenvector. The system always remains undeter-
mined...

(iii) We now suppose that the waves are not orthogonal. It can be
easily established that the two largest eigenvalues of the spectral
matrix are given by :
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We obtain the same kind of relation for d d1 2, . These two ratios
are representative of the geometrical organization between the
two considered basis. The transformation which ensures the
passing from one basis to the other one is the multiplication by a
compression matrix (∆) and a unitary matrix expressed as a com-
plex rotation matrix (Π). In the two waves case, it becomes:
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Conditions on coefficients c1, c2, d1, d2  are deduced from this last
equality:
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Thus we have to parameter the unknowns. Uniqueness of this
parametrisation is ensured by the normalisation of the eigenvec-
tors:
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We now quantify the dependency of angles θ  and κ  of the uni-
tary matrix on parameters of interest. In our case, the two desired
angles are expressed versus E the energy ratio of the sources
(E=Pa2/Pa1) and ρ the spatial coherency between the two waves.
ρ is the normalized scalar product between steering vectors (it is
a geometrical criteria). In the case of plane waves, with equis-
paced sensors (see model given in §2.1), we have:
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The module of the spatial coherency varies between 0 and 1 (see
figure 1); ρ = 0 for geometrically orthogonal waves. It becomes
true if the number of sensors is great and the angles of arrival are
different; ρ = 1 for collinear waves.

        D ifference of angles of arrival on the antenna : ∆Φ k,m

N um ber of
sensors N

M odule of the spatia l coherency coeffic ient

Figure 1: module of the spatial coherency coefficient

Finally, we find that:
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It is also possible to get the expression of eigenvectors, which
will make it possible to quantify the resolving power of the spec-
tral matrix. We have established that:
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Waves of identical energy characterize a singular case because
angle θ does not depend on spatial coherency any more. It re-
mains equal to 45° (figure 2). Moreover it is the less favorable
one in terms of separation to the extent that, after the second or-
der stage, sources still remain totally mixed (the same proportion
of each source on both whitened signals (figure 3)). In the case of
orthogonal waves (spatial coherency coefficient equals 0), angle
θ remains equal to 0° (separation is achieved after simple projec-
tion onto eigenvectors). In all other cases, the separation is still
not performed after the second order stage, but on the first eigen-
vector : proportion of the most energetic source is widely supe-
rior to the proportion of the least energetic source. In spite of the
fact that second source is less energetic, its proportion remains
superior to the proportion of most energetic source, as far as the
second eigenvetor is concerned.

4. CONCLUSION
In this work we explain how the basis of steering vectors and ei-
genvectors fit together and how this fitting depends on different
parameters such as the energy ratio of waves and their spatial cor-
relation degree. This study makes it possible for us to justify the
use of the SMF method in the case of seismic waves with differ-
ent energies, and to explain the deficiencies of this method in the
case of waves of close energies.
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Figure 2: Variations of the angle θ  versus energy ratio and spatial
coherency of the waves
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Figure 3: Fluctuations versus spatial coherency and energy ratio
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