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ABSTRACT

The problem of the design and effective implementation
of multi-dimensional filter banks with prescribed prop-
erties is considered. Several algorithms for polyphase
matrices factorization are presented.
After such a factorization the number of computations
may become much lower. The results for the 2-channel
FBs are given. For the 3-channel multirate system an
algorithmic version of Suslin’s stability theorem may be
useful for factoring the polyphase matrices.

1 INTRODUCTION

The growing demand for processing and compression of
still two-dimensional (2-D) images and video (3-D) sig-
nals in telecommunications and multimedia technology
motivates the fact that increasingly more attention is
being paid to multi-dimensional (M-D) digital filters.

The theory of Gröbner bases for ideals and mod-
ules over a multivariate polynomial ring, K[z1, z2 . . . zn],
when K is an arbitrary but fixed field and z1, z2 . . . zn are
independent variables, is applied to solve several prob-
lems of interest in multi-dimensional systems and signal
processing. An algorithmic proof of Suslin’s stability
theorem provides a method for finding an explicit fac-
torization of a given polynomial matrix into elementary
matrices. Gröbner bases techniques are used in the im-
plementation of the algorithm.

2 DESIGN OF M-D PR LP FILTER BANKS

2.1 Requirements

The usual requirements that M-D FBs should meet are
the next:

• perfect reconstruction (PR) property;

• linear phase (LP) property;

• the filters should be FIR;

• nonseparable lattices and FBs are desirable;

• the frequency responses should be quite smooth at
the edges of the stop-bands.

Some new results in the theory of FBs design with
these properties based on the theory of Gröbner bases
were obtained in [1, 2, 3].

An important fact is the next: for FIR filter banks,
a synthesis polyphase matrix F(z) and an analysis
polyphase matrixH(z) which form a perfect reconstruc-
tion (PR) pair are guaranteed to exist if and only if
det(H(z)) is a monomial.

It can be seen that the main difficulty in achieving
efficient multirate systems for processing of M-D signals
suitable for a wider range of industrial problems lies in
the simultaneous fulfillment of all necessary properties.

2.2 Application of Bernstein polynomials

It is assumed that the type of downsampling is quincun-
cial, which is the simplest nonseparable downsampling
lattice [8]. The quincunx sublattice is generated by V =
(

1 1
1 −1

)

. The PR condition can be written then

as H0(z1, z2)H1(−z1,−z2) − H1(z1, z2)H0(−z1,−z2) =
= z−2k1−1

1 z−2k2

2 , where H0(z1, z2), H1(z1, z2) are the
low-pass and high-pass filters of the analysis filter bank
and k1 and k2 are arbitrary.

As it was shown in [6, 7] the Bernstein polynomials
may be applied in order to design the FBs with the
properties mentioned above.

In this case the following low-pass analysis filter was
found

H0(z1, z2) =
1
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with gi,j chosen according to the given FB’s properties.

The values of N (and M for the high-pass filter) allow
one to adjust the smoothness of the frequency responses
for the low-pass and high-pass filters.

For the case N = 1,M = 1 the polyphase matrices
are
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1 1/4 · (1 + b)(1 + a)

1/16 · (1 + 2b + 2a + b2−
1/4 · a(1 + b)(1 + a) −28ab + a2 + 2ab2+

+2a2b + a2b2)
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Fp(a, b) =

=













1/16 · (1 + 2b + 2a + b2−
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+2a2b + a2b2)

−1/4 · a(1 + b)(1 + a) 1













,

where a = z−1
1 , b = z−1

2 .

3 FACTORIZATION OF TWO-CHANNEL

2-D FILTER BANKS

3.1 Factorization of polyphase matrices

Any M−channel filter bank is represented by M × M
polyphase polynomial matrices. The polyphase ma-
trix may be factorized into a product of elementary

and diagonal matrices by application of a Gaussian
elimination procedure (an elementary matrix eij(f)
is a matrix which coincides with the identity except
for possibly a single off-diagonal entry f in the ij-
position). As a result, the following factorization
was obtained: Hp = H1 ·H2 ·H3, where H1 =
[

1 0
1/4 · a(1 + b)(1 + a) 1

]

, H2 =

[

1 0
0 −2 · a2b

]

,

H3 =

[

1 1/4 · (1 + b)(1 + a)
0 1

]

.

This example is for the case when N = 1,M = 1 (see
[6, 7]). Similar results were obtained for N = M = 2
and N = M = 3. It should be mentioned that this
procedure may be applied for any values of N and M .

3.2 Comparison of operations number

The main reasons behind the factorization of the
polyphase matrices were:

• to reduce the number of required computations (ad-
ditions, multiplications),

• to obtain ’good’ coefficients (integers, powers of two
and so on) for the filters.

The necessary numbers of computations for both -
non-factorized and factorized cases - are given in the
table 1. It is evident that the factorization of the
polyphase polynomial matrices has a really big impact
on the computation speed. The fact that the coefficients
of the multipliers may be powers of two is also quite im-
portant.

In the table * denotes NO factorization and ** - FAC-
TORIZED.

Table 1: Comparison of non-factorized and fac-

torized polyphase matrices
N M Additions Multiplic. Operations Gain

* ** * ** * ** */**
1 1 14 8 22

6 3 9 2.44

2 2 50 32 82
14 5 19 4.3

3 3 109 107 216
30 27 57 3.78

4 REALIZATION OF THREE- AND MORE

CHANNEL MULTIRATE SYSTEMS

4.1 Gröbner bases and an algorithmic version

of the Suslin’s stability theorem

The factorization technique used above will not work for
general 2 × 2 matrices. However, according to a result
from the area of commutative algebra known as Suslin’s
stability theorem [5], any 3×3 or larger polynomial ma-
trix with determinant one can be factored into a prod-
uct of elementary matrices. An algorithmic version of
Suslin’s stability theorem is presented in [4]. Gröbner
basis techniques play a role in this algorithm. The algo-
rithm consists of three main steps:

• reduction to the special case of





a b 0
c d 0
0 0 1



,

where a, b, c and d are multivariate polynomials
with ad − bc = 1,

• generation of solutions over finitely many suitable
local rings (which allows division by certain poly-
nomials),

• patching together the local solutions (which involve
ratios of polynomials) to obtain a global solution
(which involves strictly polynomials).

Gröbner bases are an important tool in solving prob-
lems involving multivariate polynomials. The availabil-
ity of Buchberger’s algorithm for computing Gröbner
bases (and computers fast enough to run the algo-
rithm) has been a catalyst for the mathematical the-
ory of multivariate polynomials. Buchberger’s algorithm
generalized the division algorithm for univariate poly-
nomials and Gaussian elimination for linear polynomi-
als. Gröbner basis applications abound in mathemat-
ics, computer science and engineering. The theory of
Gröbner bases has become increasingly popular for fur-
ther development, adaptation and use in electrical engi-
neering. In fact, many interesting applications in various
fields of electrical engineering have already been devel-
oped.

Unfortunately, the aforementioned algorithm for
Suslin’s stability theorem is not practical. One reason is
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the patching step which patches together solutions over
local rings in such a way as to obtain a global solution.
The Hilbert basis theorem, which states that any ideal
of a multivariate polynomial ring over a field is finitely
generated, guarantees that only finitely many local so-
lutions are needed to obtain a global solution. However,
there is no a priori bound on exactly how many local
solutions are necessary.

4.2 Practical example

Can modifications be made to produce practical imple-
mentable algorithms? For instance, when the algorithm
for Suslin’s stability theorem is applied to some matri-
ces, the patching step is not needed; the local case sub-
algorithm actually yields a global (polynomial) solution.
Thus, a solution can be found much more easily than by
using the entire algorithm. One question needing further
investigation is whether or not the local case subalgo-
rithm will work in enough cases to be of practical use.
For an example, consider the matrix

M =





1 + g0 + g1 (px + q)4 0
(ry + s)4 1− g0 + g1 0

0 0 1



 ,

where p, q, r, and s are real numbers and
g0 =

√
2 (px + q) (ry + s), g1 = (px + q)2(ry + s)2.

The following factorization of M was found
by using only the local case subalgorithm:
e21((ry + s)4(1− g0 + g1))·
e23(−(px + q)3(ry + s)4) · e23(−1) · e32(1)·
e23(−1) · e21

(

(px + q)(ry + s)4(1− g0 + g1)
)

·
e23(−(px + q)3(ry + s)4) · e23(−1) · e32(1)·
e23(−1) · e21((px + q)2(ry + s)4(1− g0 + g1)·
e23(−(px + q)3(ry + s)4) · e23(−1) · e32(1)·
e23(−1) · e21

(

(px + q)3(ry + s)4(1− g0 + g1)
)

·
e23(−(px + q)3(ry + s)4) · e23(−1) · e32(1)·
e23(−1) · e21(1− g0 + g1) · e12(−1− g0 − g1)·
e32(−1) · e23(1) · e32(−1)·
e21(−(

√
2(ry + s) + (px + q)(ry + s)2)·

e12(px + q) · e21(−1) · e12(1) · e21(−1)·
e12(1) · e12(1) · e21(−1) · e12(1) · e12(1)·
e21(−1) · e12(−

√
2(ry + s)− (px + q)(ry + s)2)·

e23(−1) · e32(1) · e23(−1) · e23(1) · e32(g
2
1)·

e31(−(px + q)(1− g0 + g1)) · e32(−1) · e23(1)·
e32(−1) · e21(−

√
2(ry + s) + (px + q)(ry + s)2)·

e12(px + q) · e21(−1) · e12(1) · e21(−1) · e12(1)·
e12(1) · e21(−1) · e12(1) · e12(1) · e21(−1)·
e12(−

√
2(ry + s)− (px + q)(ry + s)2) · e23(−1)·

e32(1) · e23(−1) · e23(px + q) · e32((px + q)3(ry + s)4)
·e31(−(px + q)(1− g0 + g1))·
e32(−1) · e23(1) · e32(−1)·
e21(−

√
2(ry + s) + (px + q)(ry + s)2) · e12(px + q)·

e21(−1) · e12(1) · e21(−1) · e12(1) · e12(1)·
e21(−1) · e12(1) · e12(1) · e21(−1)·
e12(−

√
2(ry + s)− (px + q)(ry + s)2)·

e23(−1) · e32(1) · e23(−1) · e23((px + q)2)·
e32((px + q)2(ry + s)4)·

e31(−(px + q)(1− g0 + g1)) · e32(−1) · e23(1)·
e32(−1) · e21(−

√
2(ry + s) + (px + q)(ry + s)2)·

e12(px + q) · e21(−1) · e12(1) · e21(−1) · e12(1)·
e12(1) · e21(−1) · e12(1) · e12(1) · e21(−1)·
e12(−

√
2(ry + s)− (px + q)(ry + s)2)·

e23(−1) · e32(1) · e23(−1) · e23((px + q)3)·
e32((px + q)(ry + s)4) · e31(−(px + q)(1− g0 + g1))·
e21(−1) · e12(1) · e21(−1).

5 SUMMARY

The methods for generation of M-D FBs with the desired
properties based on polynomial approaches are given.

Bernstein polynomials allow one to design analytically
the polyphase polynomial matrices. The factorization of
these matrices speeds up the computation rate.

Two types of M-D multirate systems are considered -
the 2-channel and 3-channel systems.

Implementation issues are based on construction of
factorizations allowing one to obtain effective realiza-
tions of multirate systems which are suitable for a wider
range of industrial problems.
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