
 RADIX-2 MULTI-DIMENSIONAL TRANSPOSITION-FREE FFT
ALGORITHM FOR MODERN SINGLE INSTRUCTION MULTIPLE

DATA (SIMD) ARCHITECTURES

Paul Rodríguez V.

Image and Video Processing and Communication Lab (ivPCL)
Department of Electrical and Computer Engineering - University of New Mexico

Albuquerque, NM 87131 United States of America
Tel: +01 505 2771372; fax: +01 505 2771381

e-mail: prodrig@eece.unm.edu

ABSTRACT

A general radix-2 FFT algorithm was recently developed
and implemented for Modern Single Instruction Multiple
Data (SIMD) architectures. This algorithm (SIMD-FFT)
was found to be faster than any scalar FFT
implementation, and as well, than other FFT
implementations that uses the SIMD architecture for
complex 1D and 2D input data [1].

In this paper, the SIMD-FFT algorithm is extended to
handle Multi-Dimensional input data; this new approach
does not make use of matrix transposition. The results are
compared against the FFTW for the 2D and 3D case.
Overall, the SIMD-FFT was found to be faster for complex
2D input data (ranging from 82% up to 343%), and as well,
for complex 3D input data (ranging from 59.5% up to 198%)

1. INTRODUCTION

General-purpose processors with single instruction
multiple data (SIMD) capabilities can process more than
one data element in a single instruction. The SIMD
architecture has rapidly become a standard feature in the
past few years, and it is present in most general-purpose
microprocessors (Intel, AMD, Motorola, etc.).

A new general algorithm was proposed and
implemented [1] to compute FFT based on SIMD
operations, and recently, extended to handle multi-
dimensional (M-D) input data. It must be observed that for
the M-D case, memory access play an important role in the
overall performance of any FFT algorithm; it is desirable to
preserve the regular data access pattern, present in almost

any 1-D FFT algorithm. In [1] the Eklhund’s matrix
transposition algorithm [2], optimized for the SIMD
architecture was used to address this problem in the 2-D
case; nevertheless that approach cannot be efficiently
applied for higher dimensions.

The primary features of this new procedure are: (i)

preserve the architecture independent property, shown by
the preceding implementation, (ii) do not make use of
matrix transposition, and as well, employ regular data
access at any stage of the M-D transform; and (iii) let the
procedure be recursive for handling multi-dimensional
FFTs.

This paper is organized as follows: in section 2 the
SIMD architecture is briefly introduced; the SIMD-FFT
algorithm is describe in section 3, also the new approach to
handle multi-dimensional input data is explain. In section 4
computational results are shown. Conclusions are listed in
section 5.

2. SIMD ARCHITECTURE

The support for SIMD instructions was introduced in
general-purpose processors to improve the performance of
different applications (multimedia, image processing, etc).
The SIMD instructions were first introduced for integer
data, and, in the past three years, extended to support
floating point data.

Any microprocessor with SIMD floating point
capabilities allows operations over four (currently state of
art) single precision floating point (32-bit each) in a single
instruction. In what follows, without loss of generality,
only single precision floating point (32-bits) SIMD

capabilities will be considered. Floating point SIMD (FP-
SIMD) capabilities have different names among different
microprocessor manufactures:

• Intel : “Streaming SIMD Extensions (SSE)”
• AMD : “3DNow!”
• Motorola: “AltiVec”

Regardless of the manufacturer, processors with FP-
SIMD capabilities, use a special set of registers (128-bit
long each for SSE and AltiVec, 64-bit long registers for
3DNow!) to allow math operations over four single
precision floating-point numbers in a single instruction
(this is true even for 3DNow!).

3. RADIX-2 FFT

3.1. Classic algorithm

The Classic R2-FFT algorithm can be found in any
textbook in signal processing [2]. In the present paper it is
convenient to use the matrix framework introduced in [3].

Let X = [X0 X1 .. Xn-1]
t where n = 2m, then the radix-2

FFT of X can be expressed as [3, page 18]:

X)PA(FFT{X}Y N

m

1k
k∏

=

== (1)

1km2kk BIA +−⊗= (2)









−

=
LL

LL
2L OI

O I
B (3)

where ⊗ is the Kronecker product [3, page 7], IN is an NxN

identity matrix, ΩL =)W,...,Wdiag(1, 1L
2L2L

− , WL = e-j2π/L

and PN = Per(IN) is the bit reversal permutation of the
columns of the matrix IN. Note that the square matrix Ak
represents the operations perform in the kth stage of the
radix-2 FFT algorithm.

3.2. SIMD approach: Radix-2 SIMD-FFT

The radix-2 SIMD-FFT algorithm modifies the operations
performed in the first and second stage of the standard
FFT; this can be expressed as follows:

XSTRRSRT)RA(Y NN1,N11,N12,NN21,N2,N22,

m

3k
k∏

=

= (4)









−

=
N/2N/2

N/2N/2
N II

I I
S (5)









−

=
N/4

3N/4
N1, jI0

0I
T (6)



















=

2

N/4

1

N/4

N2,

V000
0I00
00V0
000I

T (7)

where R11,N = Mix(I2 ⊗ PN/2) and
R12,N = Mix(I2 ⊗ Mix(I2 ⊗ PN/4)); also R21,N = IN/4 ⊗ P4 and
R22 = R11. The matrix operation Mix(H) is a permutation of
the square NxN matrix H; let H be expressed as
H = [H1,H2,…,HN]T, where Hk is the kth row of H, then
Mix(H) = [H1,HN/2+1,H2,HN/2+2,…,HN/2,HN].

Matrices V1 and V2 (equation (7)) are diagonal, where
V1 =)W,...,1,Wdiag(1, 1

8
1
8 . The elements of V1 are composed

of two factors, and each is repeated N/8 times. Also
V2 =)W,W,...,W,diag(W 3

8
2
8

3
8

2
8 has a similar structure. These

matrices impose a restriction: the input data size must be
greater or equal than eight.

Any microprocessor with FP-SIMD capabilities can
perform the operation defined by the matrix SN (equations
(4) and (5)) using SIMD operations (four
additions/subtractions in a single instruction). Also the
operations defined by T1,N and T2,N can be easily
performed in SIMD fashion.

It must be noted that no assumption about the input
data type (real or complex) was made; furthermore,
operations define by R22,N T2,N R21,N SN (second stage of the
radix-2 SIMD-FFT) can be made in place.

3.3 M-Dimensional extension

In [1] it was shown that this algorithm leaded to a very
efficient implementation for the 1D case: speed
improvement ranged from 1.95 up to 4.72 (times faster) for
complex input data, when compared to the scalar version
of the FFTW [4]; it also outperforms other FFT
implementations that take advantage of the SIMD
architecture [5,6]. For the 2D case, which used the
Eklundh algorithm for matrix transposition (optimized for
the SIMD architecture), the speed improvement ranged
from 1.68 up to 4.43 (times faster) for complex input data
when compare to the scalar version of the FFTW.

For the general M-D input data case, a special, yet
simple approach was developed. This is explain, without
loss of generality for the 3-D case; lets assume a 3D data
set is organized in memory as follows: for a given plane (Z
axis) elements are arranged in row-wise fashion; also,

planes are stored one after the other (see fig. 1.a); in other
words all the elements are store in a 1D vector.

Y axis
(N2)

Z axis
(N3)

X axis (N1)

(1.a)

N3

N1*N2

N2 N2 N2

(1.b)

Figure 1 The computation of all FFTs along the Z axis in (a)
is equivalent to the computation of all FFTs along columns
in (b).

Hence to compute the 3D DFT, we could compute the
2D FFT across planes, and then compute a 1D FFT
through the Z axis; At this point we can consider our 3D
data set (with dimension N1xN2xN3) as a 2D data set (with
dimensions N1*N2xN3); and compute FFT across the
columns of the equivalent matrix. This can be expressed
using equation (1) as follows:

N2*N3xN13N

m3

1k
kaxis-Z X)PA({X}FFTY ∏

=

== (8)

where PN3 and Ak are defined as in section 3.1; also
N3 = 2m3. We should notice that if a SIMD architecture

could handle N1*N2 elements at a time we are back in the 1-
D case. There is no such an architecture, but we can
implement this idea with the current SIMD technology: we
repeat the same operation N1*N2/4 times; if we proceed
following this approach, now all data accesses are regular
and continuous in memory; also we note that there is no
need for transpose the data set. Finally we notice that we
need to generate the twiddle factors using a method
compatible with this idea: repeat the same twiddle factor
four times.

A pseudo algorithm to carry out the present approach

for the 3-D case can be summarize as follows:

• Compute N3*N2 1-D FFTs.
• Compute FFTs across columns of N3 matrices of size

N2xN1 (each operation is repeated N1/4 times).
• Compute FFTs across columns of 1 matrix of size

N3xN2*N1 (each operation is repeated N2*N1/4 times).

It should be noted that memory management is a real

issue for the M-D case; In particular for the 3D case, a
complex floating point cube of size N, needs 8*N3 bytes of
memory (about 132M for a cube of 256 elements per
dimension); memory management and organization of the
input/output data set should be considered as part of any
M-D FFT algorithm.

4. COMPUTATIONAL RESULTS

The extension to the SIMD-FFT algorithm was
implemented in C along with inline assembly instructions,
using Linux (kernel 2.4.13) as OS on an Intel architecture
(to allow portability only PIII SSE instruction set was
allowed) and on a Motorola PowerPC (PPC) architecture;
its performance was compared against the FFTW (version
2.1.3) [4]. The compilation options for the FFTW included
the –enable-i386-hacks and –enable-float flags.

This new algorithm was fully tested on a Pentium4
(P4) running at 1.4 GHz, with 512M of RAM; its CPU clock
was measured using the time-stamp counter [7], and used
to calculate the time performance for all implementations.

The procedure used to compare the time performance
between all implementations was to perform the direct
Fourier transform of complex-input data, for length from 25
up to 210 elements in the 2D case and for length from 24 up
to 28 elements in the 3D. The transforms were performed
repeatedly (103 iterations for both 2D and 3D respectively)
for a particular size, and repeated 10 times. Also, any one-
time initialization cost is not included in the measurements.
Results (best case) are shown in tables I and II (also fig. 2
and 3) for the complex case, 2D and 3D respectively.

2D FFT MEAN TIME (MILISECONDS)

LINUX INTEL

SIZE
PER
DIM SIMD-FFT ([1])

SIMD-FFT

(Transposition-free)
FFTW

25 0.041 0.029 0.070

26 0.168 0.131 0.317

27 0.937 1.755 1.712

28 5.147 8.816 20.611

29 22.436 42.012 99.517

210 115.350 197.842 426.015

Table 1. Time performance for the complex 2D input data.
The mean value (ms) for 103 iterations is shown.

3D FFT MEAN TIME (MILISECONDS)

LINUX INTEL

SIZE
PER
DIM SIMD-FFT FFTW

24 0.157 0.341

25 3.237 5.165

26 36.980 107.647

27 400.587 1141.518

28 4352.827 13006.450

Table 2. Time performance for the complex 3D input data.
The mean value (ms) for 103 iterations is shown.

2D COMPLEX INPUT DATA (P4)

0

200

400

5 6 7 8 9 10

INPUT DATA SIZE (SQUARE IMAGE)

%

Figure 2 2D SIMD-FFT performance improvements over
the scalar 2D FFTW is shown for the Intel architecture.

Table 1 compares the time performance for the 2-D
case between the 2-D SIMD-FFT [1], the new transposition
free approach and the scalar FFTW for complex input data.
It must be noted that for small images the new approach
(transposition-free) is more efficient than the previous
implementation of the SIMD-FFT; if we combine both
approach, the 2D SIMD-FFT outperforms the FFTW
ranging from 89% up to 343%; the percentage factor is:
100*(TFFTW/TSIMD-FFT – 1). Also, for the complex 3D case,
the SIMD-FFT outperforms the FFTW’s scalar
implementation ranging from 59.5% up to 198% (see table 2
and figure 3); in this case, to compute all FFTs across
planes, the final implementation combine both methods:
the one used in [1] and the transposition-free approach.

5. CONCLUSIONS

An extension to the SIMD-FFT algorithm was derive and
implemented for N-Dimension input data set. The time
performance shows that this approach is well suited for
small image and very large images (2D case); these results
improve results in [1]. Also for the 3D case, the time
performance was found to be better than the performance
of other general M-D FFT implementations [4].

6. ACKNOWLEDGEMENT

The author would like to thank Dr. Marios S. Pattichis,
whose suggestions improved this work.

3D COMPLEX INPUT DATA (P4)

0
50

100
150
200
250

4 5 6 7 8

INPUT DATA SIZE (CUBE)

%

 Figure 3 3D SIMD-FFT performance improvements over
the scalar 3D FFTW is shown for the Intel architecture.

7. REFERENCES

[1] Paul Rodríguez V. “A Radix-2 FFT Algorithm for

Modern Single Instruction Multiple Data (SIMD)
Architectures” submitted to ICASSP 2002

[2] D. E. Dudgeon, R. M. Mersereau “Multidimensional
Digital Signal Processing” Prentice Hall, Englewood
Cliffs, NJ 1984

[3] C. Van Loan “Computational Frameworks for the Fast
Fourier Transform” SIAM 1992

[4] M. Frigo “A Fast Fourier Transform Compiler”
Proceedings of the PLDI Conference, May 1999
Atlanta, USA

[5] F. Franchetti “Architecture Independent Short Vector
FFT” ICASSP 2001 Proceedings, Salt Lake, USA.

[6] “Split-Radix Fast Fourier Transform Using Streaming
SIMD Extensions” Version 2.1 Application Notes Intel Ap-
808 January 1999

[7] “IA-32 Intel Architecture Software Developer’s Manual”
Vol. 2, No. 245471, 2001

[8] AltiVec Technology Programming Environment
Manual – CT_ALTIVECPEM_R1 February 2001.

