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ABSTRACT 

 
A general radix-2 FFT algorithm was recently developed 
and implemented for Modern Single Instruction Multiple 
Data (SIMD) architectures. This algorithm (SIMD-FFT) 
was found to be faster than any scalar FFT 
implementation, and as well, than other FFT 
implementations that uses the SIMD architecture for 
complex 1D and 2D input data [1]. 
 
In this paper, the SIMD-FFT algorithm is extended to 
handle Multi-Dimensional input data; this new approach 
does not make use of matrix transposition. The results are 
compared against the FFTW for the 2D and 3D case. 
Overall, the SIMD-FFT was found to be faster for complex 
2D input data (ranging from 82% up to 343%), and as well, 
for complex 3D input data (ranging from 59.5% up to 198%) 
 
 

1. INTRODUCTION 
 
General-purpose processors with single instruction 
multiple data (SIMD) capabilities can process more than 
one data element in a single instruction. The SIMD 
architecture has rapidly become a standard feature in the 
past few years, and it is present in most general-purpose 
microprocessors (Intel, AMD, Motorola, etc.). 
 

A new general algorithm was proposed and 
implemented [1] to compute FFT based on SIMD 
operations, and recently, extended to handle multi-
dimensional (M-D) input data. It must be observed that for 
the M-D case, memory access play an important role in the 
overall performance of any FFT algorithm; it is desirable to 
preserve the regular data access pattern, present in almost 

any 1-D FFT algorithm. In [1] the Eklhund’s matrix 
transposition algorithm [2], optimized for the SIMD 
architecture was used to address this problem in the 2-D 
case; nevertheless that approach cannot be efficiently 
applied for higher dimensions. 

 
The primary features of this new procedure are: (i) 

preserve the architecture independent property, shown by 
the preceding implementation, (ii) do not make use of 
matrix transposition, and as well, employ regular data 
access at any stage of the M-D transform; and (iii) let the 
procedure be recursive for handling multi-dimensional 
FFTs. 
 

This paper is organized as follows: in section 2 the 
SIMD architecture is briefly introduced; the SIMD-FFT 
algorithm is describe in section 3, also the new approach to 
handle multi-dimensional input data is explain. In section 4 
computational results are shown. Conclusions are listed in 
section 5. 
 

2. SIMD ARCHITECTURE 
 
The support for SIMD instructions was introduced in 
general-purpose processors to improve the performance of 
different applications (multimedia, image processing, etc). 
The SIMD instructions were first introduced for integer 
data, and, in the past three years, extended to support 
floating point data.  
 

Any microprocessor with SIMD floating point 
capabilities allows operations over four (currently state of 
art) single precision floating point (32-bit each) in a single 
instruction. In what follows, without loss of generality, 
only single precision floating point (32-bits) SIMD 



capabilities will be considered. Floating point SIMD (FP-
SIMD) capabilities have different names among different 
microprocessor manufactures:  
 
• Intel :  “Streaming SIMD Extensions (SSE)”  
• AMD : “3DNow!”  
• Motorola: “AltiVec”  
 

Regardless of the manufacturer, processors with FP-
SIMD capabilities, use a special set of registers (128-bit 
long each for SSE and AltiVec, 64-bit long registers for 
3DNow!) to allow math operations over four single 
precision floating-point numbers in a single instruction 
(this is true even for 3DNow!). 

 
3. RADIX-2 FFT 

 
3.1. Classic algorithm 
 
The Classic R2-FFT algorithm can be found in any 
textbook in signal processing [2]. In the present paper it is 
convenient to use the matrix framework introduced in [3]. 
 

Let X = [X0 X1 .. Xn-1]
t where n = 2m, then the radix-2 

FFT of X can be expressed as [3, page 18]: 
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where ⊗  is the Kronecker product [3, page 7], IN is an NxN 

identity matrix, ΩL = )W,...,Wdiag(1, 1L
2L2L

− ,          WL = e-j2π/L 

and   PN = Per(IN) is the bit reversal permutation of the 
columns of the matrix IN. Note that the square matrix Ak 
represents the operations perform in the kth stage of the 
radix-2 FFT algorithm. 
 
3.2. SIMD approach: Radix-2 SIMD-FFT 
 
The radix-2 SIMD-FFT algorithm modifies the operations 
performed in the first and second stage of the standard 
FFT; this can be expressed as follows: 
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where R11,N = Mix( I2 ⊗ PN/2 )   and                                       
R12,N = Mix(I2 ⊗ Mix(I2 ⊗ PN/4)); also R21,N = IN/4 ⊗ P4 and     
R22 = R11. The matrix operation Mix(H) is a permutation of 
the square NxN matrix H; let H be expressed as                              
H = [H1,H2,…,HN]T, where Hk is the kth row of H, then            
Mix(H) = [H1,HN/2+1,H2,HN/2+2,…,HN/2,HN]. 
 

Matrices V1 and V2 (equation (7)) are diagonal, where 
V1 = )W,...,1,Wdiag(1, 1

8
1
8 . The elements of V1 are composed 

of two factors, and each is repeated N/8 times. Also          
V2 = )W,W,...,W,diag(W 3

8
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8  has a similar structure. These 

matrices impose a restriction: the input data size must be 
greater or equal than eight. 
 

Any microprocessor with FP-SIMD capabilities can 
perform the operation defined by the matrix SN (equations 
(4) and (5)) using SIMD operations (four 
additions/subtractions in a single instruction). Also the 
operations defined by T1,N and T2,N can be easily 
performed in SIMD fashion. 
  

It must be noted that no assumption about the input 
data type (real or complex) was made; furthermore, 
operations define by R22,N T2,N R21,N SN (second stage of the 
radix-2 SIMD-FFT) can be made in place.  
 

3.3 M-Dimensional extension 
 

In [1] it was shown that this algorithm leaded to a very 
efficient implementation for the 1D case: speed 
improvement ranged from 1.95 up to 4.72 (times faster) for 
complex input data, when compared to the scalar version 
of the FFTW [4]; it also outperforms other FFT 
implementations that take advantage of the SIMD 
architecture [5,6].  For the 2D case, which used the 
Eklundh algorithm for matrix transposition (optimized for 
the SIMD architecture), the speed improvement ranged 
from 1.68 up to 4.43 (times faster) for complex input data 
when compare to the scalar version of the FFTW.  
 

For the general M-D input data case, a special, yet 
simple approach was developed. This is explain, without 
loss of generality for the 3-D case; lets assume a 3D data 
set is organized in memory as follows: for a given plane (Z 
axis) elements are arranged in row-wise fashion; also, 



planes are stored one after the other (see fig. 1.a); in other 
words all the elements are store in a 1D vector. 
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Figure 1 The computation of all FFTs along the Z axis in (a) 
is equivalent to the computation of all FFTs along columns 
in (b). 
 

Hence to compute the 3D DFT, we could compute the 
2D FFT across planes, and then compute a 1D FFT 
through the Z axis; At this point we can consider our 3D 
data set (with dimension N1xN2xN3) as a 2D data set (with 
dimensions N1*N2xN3); and compute FFT across the 
columns of the equivalent matrix. This can be expressed 
using equation (1) as follows: 
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where PN3 and Ak are defined as in section 3.1; also           
N3 = 2m3.  We should notice that if a SIMD architecture 

could handle N1*N2 elements at a time we are back in the 1-
D case. There is no such an architecture, but we can 
implement this idea with the current SIMD technology: we 
repeat the same operation N1*N2/4 times; if we proceed 
following this approach, now all data accesses are regular 
and continuous in memory; also we note that there is no 
need for transpose the data set. Finally we notice that we 
need to generate the twiddle factors using a method 
compatible with this idea: repeat the same twiddle factor 
four times. 

 
A pseudo algorithm to carry out the present approach 

for the 3-D case can be summarize as follows: 
 

• Compute N3*N2 1-D FFTs. 
• Compute FFTs across columns of N3 matrices of size 

N2xN1 (each operation is repeated N1/4 times). 
• Compute FFTs across columns of 1 matrix of size 

N3xN2*N1 (each operation is repeated N2*N1/4 times). 
 
It should be noted that memory management is a real 

issue for the M-D case; In particular for the 3D case, a 
complex floating point cube of size N, needs 8*N3 bytes of 
memory (about 132M for a cube of 256 elements per 
dimension); memory management and organization of the 
input/output data set should be considered as part of any 
M-D FFT algorithm. 
 

4. COMPUTATIONAL RESULTS 
 
The extension to the SIMD-FFT algorithm was 
implemented in C along with inline assembly instructions, 
using Linux (kernel 2.4.13) as OS on an Intel architecture 
(to allow portability only PIII SSE instruction set was 
allowed) and on a Motorola PowerPC (PPC) architecture; 
its performance was compared against the FFTW (version 
2.1.3) [4]. The compilation options for the FFTW included 
the –enable-i386-hacks and –enable-float flags. 
 

This new algorithm was fully tested on a Pentium4 
(P4) running at 1.4 GHz, with 512M of RAM; its CPU clock 
was measured using the time-stamp counter [7], and used 
to calculate the time performance for all implementations. 
 

The procedure used to compare the time performance 
between all implementations was to perform the direct 
Fourier transform of complex-input data, for length from 25 
up to 210 elements in the 2D case and for length from 24 up 
to 28 elements in the 3D. The transforms were performed 
repeatedly (103 iterations for both 2D and 3D respectively) 
for a particular size, and repeated 10 times. Also, any one-
time initialization cost is not included in the measurements. 
Results (best case) are shown in tables I and II (also fig. 2 
and 3) for the complex case, 2D and 3D respectively. 



2D FFT     MEAN TIME (MILISECONDS) 

LINUX INTEL 

 

 

 

SIZE 
PER
DIM SIMD-FFT ([1]) 

 
SIMD-FFT 

(Transposition-free) 
FFTW 

25 0.041 0.029 0.070 

26 0.168 0.131 0.317 

27 0.937 1.755 1.712 

28 5.147 8.816 20.611 

29 22.436 42.012 99.517 

210 115.350 197.842 426.015 

Table 1. Time performance for the complex 2D input data. 
The mean value (ms) for 103 iterations is shown. 
 

3D FFT     MEAN TIME (MILISECONDS) 

LINUX INTEL 

 

 

 

SIZE
PER
DIM SIMD-FFT FFTW 

24 0.157 0.341 

25 3.237 5.165 

26 36.980 107.647 

27 400.587 1141.518 

28 4352.827 13006.450 

Table 2. Time performance for the complex 3D input data. 
The mean value (ms) for 103 iterations is shown. 
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Figure 2 2D SIMD-FFT performance improvements over 
the scalar 2D FFTW is shown for the Intel architecture. 
 

Table 1 compares the time performance for the 2-D 
case between the 2-D SIMD-FFT [1], the new transposition 
free approach and the scalar FFTW for complex input data. 
It must be noted that for small images the new approach 
(transposition-free) is more efficient than the previous 
implementation of the SIMD-FFT; if we combine both 
approach, the 2D SIMD-FFT outperforms the FFTW 
ranging from 89% up to 343%; the percentage factor is: 
100*(TFFTW/TSIMD-FFT – 1). Also, for the complex 3D case, 
the SIMD-FFT outperforms the FFTW’s scalar 
implementation ranging from 59.5% up to 198% (see table 2 
and figure 3); in this case, to compute all FFTs across 
planes, the final implementation combine both methods: 
the one used in [1] and the transposition-free approach. 

5. CONCLUSIONS 
 
An extension to the SIMD-FFT algorithm was derive and 
implemented for N-Dimension input data set. The time 
performance shows that this approach is well suited for 
small image and very large images (2D case); these results 
improve results in [1]. Also for the 3D case, the time 
performance was found to be better than the performance 
of other general M-D FFT implementations [4].  
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 Figure 3 3D SIMD-FFT performance improvements over 
the scalar 3D FFTW is shown for the Intel architecture. 
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